生玉秋 宋丹 许璐珂 杨婷 贺三亭
摘 要:為了研究剩余类环上对称矩阵模的保行列式的加法映射,首先说明这类加法映射其实都是线性的,然后通过合同变换,利用数论知识和行列式运算并借助于整数的标准素分解进行分类讨论,以确定主要基底的像,再利用映射的线性性质确定所有矩阵的像,并讨论了本质上属于同一类映射的映射形式之间的关系。结果表明,剩余类环上二阶对称矩阵模上保行列式的加法映射都是规范的。研究方法解决了一般环上非零元未必有逆的本质带来的困难,将基础集扩展到剩余类环上,此结果可以看作是保行列式问题向环靠近的一小步,改进了线性保持问题的已有结果,对剩余类环上的其他保持问题的研究也具有参考价值。
关键词:线性代数;加法映射;剩余类环;矩阵模;保行列式
中图分类号:O151.21 MSC(2010)主题分类:15A86 文献标志码:A
文章编号:1008-1542(2018)06-0527-05
4 结 语
本文主要刻画了剩余类环上的二阶矩阵模上的保行列式的线性映射的具体形式,将保行列式问题的基础集从域扩展到了环,改进了已有文献的结果。另外,数论理论的应用在保持问题中还未有过,它主要用来克服一般环中非零元未必有逆带来的困扰,也给其他保持问题的解决提供了借鉴,但毕竟剩余类环相对特殊,未来还应着力在除环或特殊的整环以至一般的交换环上考虑这类问题。
参考文献/References:
[1] FROBENIUS G.ber die Darstellung Der Endlichen Gruppen Durch Lineare Substitutionen [M]. Berlin: Sitzungsber Deutsch Akad Wiss , 1897.
[2] EATON M L. On linear transformations which preserve the determinant[J]. Illinois Journal of Mathematics,1969, 13(4): 722-727.
[3]LAUTEMANN C. Linear transformations on matrices: Rank preservers and determinant preservers[J]. Linear and Multilinear Algebra,1981, 10(4):343-345.
[4] DOLINAR G,EMRL P. Determinant preserving maps on matrix algebras[J]. Linear Algebra and Its Applications, 2002, 348(1/2/3): 189-192.
[5] TAN V,WANG F. On determinant preserver problems[J]. Linear Algebra and Its Applications, 2003, 369(1):311-317.
[6] CAO Chongguang, TANG Xiaomin. Determinant preserving transformations on symmetric matrix spaces[J]. Electronic Journal of Linear Algebra, 2004,11(1):205-211.
[7] ZHANG Xian, TANG Xiaomin, CAO Chongguang. Preserver Problems on Spaces of Matrices[M]. Beijing: Science Press, 2007.
[8] HUANG Huajun, LIU C N, SZOKOL P, et al. Trace and determinant preserving maps of matrices[J]. Linear Algebra and Its Applications, 2016,507(15): 373-388.
[9] GERGO N. Determinant preserving maps: An infinite dimensional version of a theorem of frobenius[J]. Linear and Multilinear Algebra,2017, 65(2):351-360.
[10]MARCELL G, SOUMYASHANT N. On a class of determinant preserving maps for finite von Neumann algebras[J]. Jouranl of Mathematical Analysis and Applications, 2018, 464(1):317-327.
[11]GOLBERG M A. The derivative of a determinant[J]. American Mathematical Monthly, 1972,79(10): 1124-1126.
[12]PIERCE S. A survey of linear preserver problems[J]. Pacific Journal of Mathematics, 1992, 204(2):257-271.
[13]AUPETIT B. Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras[J]. Journal of the London Mathematical Society, 2000, 62(3): 917-924.
[14]GUTERMAN A, LI C K, EMRL P. Some general techniques on linear preserver problems[J]. Linear Algebra and Its Applications, 2000, 315(1/3): 61-81.
[15]LI C K, TSING N K. Linear preserver problems: A brief introduction and some special techniques[J]. Linear Algebra and Its Applications, 1992, 162(2):217-235.
[16]LI C K, PIERSE S. Linear preserver problems[J]. American Mathematical Monthly , 2001, 108(7):591-605.
[17]EMRL P. Maps on matrix spaces[J]. Linear Algebra and Its Applications, 2006, 413(2): 364-393.
[18]DUFFNER M A, CRUZ H F D.Rank nonincreasing linear maps preserving the determinant of tensor product of matrices[J]. Linear Algebra and Its Applications, 2016, 510(1): 186-191.
[19]DING Yuting, FOSNER A, XU Jinli, et al. Linear maps preserving determinant of tensor products of Hermitian matrices[J]. Journal of Mathematical Analysis and Applications, 2016, 446(2):1139-1153.
[20]HARDY Y,FOSNER A. Linear maps preserving kronecker quotients[J]. Linear Algebra and Its Applications,2018, 556(2): 200-209.
[21]JI Youqing, LIU Ting, ZHU Sen. On linear maps preserving complex symmetry[J]. Journal of Mathematical Analysis and Applications, 2018, 468(1):1144-1163.
[22]COSTARA C. Linear surjective maps preserving at least one element from the local spectrum[J]. Proceedings of the Edinburgh Mathematical Society, 2018, 61(1):169-175.
[23]ZHANG Jiayu, SHENG Yuqiu. Additive maps preserving determinant on modules of matrices over [J]. International Research Journal of Pure Algebra, 2017, 7(4): 513-521.