张玉峰,叶坤英,钟丹
(1河南中医药大学第二临床医学院,郑州450002;2井冈山大学医学院)
小干扰RNA与反义寡核苷酸技术抑制肝星状细胞RhoA表达的效果比较
张玉峰1,叶坤英1,钟丹2
(1河南中医药大学第二临床医学院,郑州450002;2井冈山大学医学院)
目的对比观察小干扰RNA(siRNA)和反义寡核苷酸(ASODN)技术抑制肝星状细胞RhoA表达的效果。方法将培养的大鼠肝星状细胞株HSC-T6随机分为siRNA组和ASODN组,两组又分别分为A、B、C、D各4个亚组;siRNA组和ASODN组中的A亚组不转染质粒, C、D、B亚组分别采用siRNA、ASODN技术转染大鼠RhoA特异性Rat1 、Rat2质粒及HK-A阴性对照质粒。转染48 h取各组细胞,以RT-PCR技术检测细胞中的RhoA、Ⅰ型胶原(Col Ⅰ) mRNA,酶联免疫吸附法检测细胞上清液中的透明质酸(HA)及层粘连蛋白(LN)。结果siRNA组与ASODN组中RhoA、Col Ⅰ mRNA均以C亚组表达量最低,组内A、C亚组比较差异有统计学意义(P均<0.05),组内其余亚组间比较差异无统计学意义(P均>0.05);siRNA组C亚组RhoA、Col Ⅰ mRNA相对表达量低于ASODN组(P均<0.05),两组A、B、D同亚组间比较差异无统计学意义(P均>0.05)。siRNA组与ASODN组细胞上清液HA、LN水平均以C亚组最低,组内A、C亚组比较差异有统计学意义(P均<0.05),组内其余亚组间比较差异无统计学意义(P均>0.05);siRNA组C亚组细胞上清液HA、LN水平低于ASODN组(P均<0.05),两组A、B、D同亚组间比较差异无统计学意义(P均>0.05)。结论siRNA和ASODN均可抑制大鼠HSC-T6细胞的RhoA表达,但siRNA下Rat1质粒所介导的 RNA干扰技术相对于ASODN能更有效抑制HSC-T6细胞外基质HA、Col Ⅰ、LN的生成。
小干扰RNA;反义寡核苷酸;RhoA;透明质酸;Ⅰ型胶原;层粘连蛋白;肝星状细胞
肝纤维化是肝脏疾病慢性发展的一个重要病理特征,也是肝硬化发生的中间环节。研究[1~4]发现,肝星状细胞(HSC)在肝纤维化过程中明显存在增殖活化,增殖活化的HSC可产生大量的细胞外基质,如透明质酸(HA)、Ⅰ型胶原(Col Ⅰ)及层粘连蛋白(LN)等,这些物质沉淀最终可导致肝纤维化。Rho家族蛋白能参与多种信号通路,调节细胞功能。有研究[5~8]显示,Rho参与了多种器官组织的纤维化。因此,理论上认为抑制Rho信号传导途径可阻止肝纤维化的进程。小干扰RNA(siRNA)和反义寡核苷酸(ASODN)是目前常用的端粒酶抑制剂,常用于基因的靶向治疗。2015年6月~2016年6月,我们对比观察了这两种靶向技术对大鼠HSC中Rho表达的抑制效果,为肝纤维化的基因治疗提供一定参考依据。现报告如下。
1.1 材料 大鼠HSC-T6细胞购自上海中医药大学,表达绿色荧光蛋白(EGFP)的大鼠RhoA特异性Rat1及Rat2质粒、HK-A阴性对照质粒由上海中医药大学合成;DMEM高糖培养基、新生牛血清(Gibco公司),TaqDNA聚合酶及M-MLV逆转录酶、Rnasin核酸酶抑制剂(Promega公司);大鼠HA、Col Ⅰ及LN联免疫吸附法检测试剂盒(上海生物科技有限公司)。离心机(BECKMAN公司),恒温培养箱(Thermo Forma公司),PCR扩增仪(MJ Research公司),酶联免疫检测仪(Thermo Labsysterm公司),紫外分光光度仪(Bechman公司)。
1.2 实验方法
1.2.1 细胞培养 取DMEM高糖培养基与新生牛血清,配制成含10%新生牛血清培养液;将HSC-T6细胞在5%CO2、饱和湿度、37 ℃下培养,细胞生长80%~90%融合时进行传代;传代过程中以10%新生牛血清培养基终止消化,获取实验所需的HSC-T6细胞。
1.2.2 细胞分组与转染 将HSC-T6细胞随机分为siRNA组和ASODN组,两组又分别分为A、B、C、D各4个亚组,均接种于6孔板,每组接种2孔(0.5×106/孔),同时每组另设6个复孔为对照。siRNA组和ASODN组中的A亚组不转染质粒, C、D、B亚组分别采用siRNA、ASODN技术转染大鼠RhoA特异性Rat1 、Rat2质粒及HK-A阴性对照质粒。24 h后荧光倒置显微镜下观察细胞荧光,转染48 h后收集细胞和上清。两组中A亚组细胞生长良好,形态轮廓清楚;B、C、D组细胞中均见绿色荧光,细胞生长状态较差,细胞转染成功。
1.2.3 细胞中RhoA、Col Ⅰ mRNA检测 采用RT-PCR技术。取各组细胞,经RNA的提取、mRNA逆转录为cDNA、PCR反应、电泳等步骤,电泳产物最终在图像分析仪中进行灰度扫描;用图像分析仪采集图像,以扩增目的片段与β-actin的灰度比值表示所扩增的目的基因片段相对表达水平。RhoA上游引物为5′-GTAGAGTTGGCTTTATGGG-3′,下游引物为5′-CTCACTCCGTCTTTGGTC-3′,扩增的片段长度为347 bp。扩增条件:94 ℃预变性3 min;94 ℃变性1 min,53 ℃退火50 s,72 ℃延伸40 s,32个循环;最后72 ℃延伸8 min。Col Ⅰ上游引物为5′-TGGCGTTCGTGGCTCTCAGGGTAG-3′,下游引物为5′-GCATGTGCGGGCAGGGTTCTTTC-3′,扩增的片段长度为259 bp;扩增条件:95 ℃预变性5 min;95 ℃变性1 min,5 ℃退火50 s,72 ℃延伸40 s,32个循环;最后72 ℃延伸8 min。
1.2.4 细胞上清液中HA、LN检测 采用酶联免疫吸附法。经前述细胞培养、分组及转染,以3 000 r/min,4 ℃离心10 min,取上清液,检测细胞上清液中HA、LN。检测过程包括建立标准孔及对照孔、各孔加待测液及一抗、酶标抗体工作液、底物抗体工作液、终止液等步骤,最终产物以紫外分光光度仪在492 nm处测定吸光值,计算出HA及LA含量。
2.1 各组细胞中RhoA、Col Ⅰ mRNA相对表达量比较 siRNA组与ASODN组中RhoA、Col Ⅰ mRNA均以C亚组表达量最低,组内A、C亚组比较差异有统计学意义(P均<0.05),组内其余亚组间比较差异无统计学意义(P均>0.05);siRNA组C亚组RhoA、Col Ⅰ mRNA相对表达量低于ASODN组(P<0.05),两组A、B、D同亚组间比较差异无统计学意义(P均>0.05)。见表1。
表1 各组细胞中RhoA、Col Ⅰ mRNA相对表达量
注:与同组内A亚组比较,*P<0.05;与ASODN组同亚组比较,#P<0.05。
2.2 各组细胞上清液HA、LN水平比较 siRNA组与ASODN组细胞上清液HA、LN水平均以C亚组最低,组内A、C亚组比较差异有统计学意义(P均<0.05),组内其余亚组间比较差异无统计学意义(P均>0.05);siRNA组C亚组细胞上清液HA、LN水平低于ASODN组(P均<0.05),两组A、B、D同亚组间比较差异无统计学意义(P均>0.05)。见表2。
表2 各组细胞上清液HA、LN水平比较
注:与同组内A亚组比较,*P<0.05;与ASODN组同亚组比较,#P<0.05。
HSC被认为是肝纤维化过程中的关键细胞,也是导致肝细胞发生纤维化及胶原产生的主要原因。HSC被激活后可分泌肿瘤坏死因子、血小板源性生长因子等细胞因子,从而引起细胞外基质在肝内沉积,导致肝纤维化发生。Col Ⅰ、HA及LN是细胞外基质的主要成分,临床研究也显示在肝纤维化时Col Ⅰ、HA及LN的表达均明显升高[9~11]。在肝细胞受损时,内皮细胞对HA的降解能力下降,因此在细胞及血清中HA升高。Col Ⅰ则为细胞基底膜的组成成分,在肝内合成及代谢。肝细胞受损可引起Col Ⅰ破坏,LA主要参与肝窦毛细血管化形成。因此,以上指标往往作为判断有无纤维化及纤维化严重程度的指标被临床应用。
Rho家族蛋白已经临床证实参与了多种器官组织的纤维化进程,其介导的信号通路一直是临床纤维化研究中的新靶点。有研究[5~8]显示,RhoA是重要的促纤维化因子,采用RNA干扰技术对HSC-T6细胞进行转染能抑制RhoA基因的表达,同时阻断RhoA对HSC激活,降低Col Ⅰ、HA及LN等细胞外基质的生成,起到阻断纤维化过程。反义技术是根据核酸间碱基配对结合原理从基因水平上干扰核酸向蛋白质的传递,siRNA和ASODN两组技术均属于反义技术[12~16],以mRNA为靶点,对靶基因表达进行调节。本研究采用以上两种方法抑制HSC-T6细胞中的RhoA表达,结果显示两种方法均能抑制RhoA的表达,证实抑制HSC-T6细胞中的RhoA表达采用以上技术是可行的。观察两种方法下Col Ⅰ、HA及LN的表达,均表现为以上细胞外基质指标的下调;但是,进一步比较两种技术下具体下调效果,siRNA相对于ASODN对细胞外基质的下调效果更为明显,说明以上两种技术可能有不同的反义作用机制。一般认为,ASODN主要是通过与细胞核内的mRNA前体相互作用形成双链DNA最终阻断蛋白质的翻译,siRNA与ASODN存在差别可能在于mRNA前体和成熟mRNA一级结构,因此导致最终抑制效应也存在不同。但是,由于ASODN在研究过程中更为稳定,并且研究较为成熟,这也是临床尚未放弃研究ASODN机制的原因。但是,siRNA也已经成为临床新的研究热点,值得进一步深入研究其机制。
综上所述,siRNA和ASODN均可抑制HSC-T6细胞中RhoA的表达,siRNA下Rat1质粒所介导的 RNA干扰技术相对于ASODN能更有效抑制HSC-T6细胞外基质HA、Col Ⅰ、LN的生成,为肝纤维化的基因治疗提供了方向。
[1] Pradere JP, Kluwe J, Minicis S, et al. Hepatic macrophages but not dendritic cells contribute to liver fibrosis by promoting the survival of activated hepatic stellate cells in mice[J]. Hepatology, 2013,58(4):1461-1473.
[2] Tan Z, Qian X, Jiang R, et al. IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation[J]. J Immunol, 2013,191(4):1835-1844.
[3] Kong X, Feng D, Wang H, et al. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice[J]. Hepatology, 2012,56(3):1150-1159.
[4] Troeger JS, Mederacke I, Gwak GY, et al. Deactivation of hepatic stellate cells during liver fibrosis resolution in mice[J]. Gastroenterology, 2012,143(4):1073-1083.
[5] Knipe RS, Tager AM, Liao JK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis[J]. Pharmacol Rev, 2015,67(1):103-117.
[6] Riches DWH, Backos DS, Redente EF. ROCK and Rho: promising therapeutic targets to ameliorate pulmonary fibrosis[J]. Am J Pathol, 2015,185(4):909-912.
[7] Tsou PS, Haak AJ, Khanna D, et al. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: focus on Rho GTPase-regulated gene transcription[J]. Am J Physiol Cell Physiol, 2014,307(1):2-13.
[8] Satoh K, Suzuki K, Sunamura S, et al. Crucial roles of rho-kinase, cyclophilin a and its receptor, basigin, for cardiac hypertrophy, fibrosis and failure-novel therapeutic targets[J]. J Card Fail, 2015,21(10):158.
[9] Iredale JP, Thompson A, Henderson NC. Extracellular matrix degradation in liver fibrosis: Biochemistry and regulation[J]. Biochim Biophys Acta, 2013,1832(7):876-883.
[10] Leeming DJ, Byrjalsen I, Jimenez W, et al. Protein fingerprinting of the extracellular matrix remodelling in a rat model of liver fibrosis-a serological evaluation[J]. Liver Int, 2013,33(3):439-447.
[11] Zhang Z, Guo Y, Zhang S, et al. Curcumin modulates cannabinoid receptors in liver fibrosis in vivo and inhibits extracellular matrix expression in hepatic stellate cells by suppressing cannabinoid receptor type-1 in vitro[J]. Eur J Pharmacol,2013,721(1):133-140.
[12] Wagner A, Bock CT, Fechner H, et al. Application of modified antisense oligonucleotides and siRNAs as antiviral drugs[J]. Future Med Chem, 2015,7(13):1637-1642.
[13] Prakash TP, Lima WF, Murray HM, et al. Lipid nanoparticles improve activity of single-stranded siRNA and gapmer antisense oligonucleotides in animals[J]. ACS Chem Biol, 2013,8(7):1402-1406.
[14] Bolduc V, Zou Y, Lindow M, et al. GP 216: Allele-specific silencing of a dominant-negative mutation using siRNA or LNA antisense oligonucleotides alleviates the phenotype of a cellular model of Ullrich congenital muscular dystrophy[J]. Neurom Dis,2014,24(9):881-882.
[15] Lima WF, De Hoyos CL, Liang X, et al. RNA cleavage products generated by antisense oligonucleotides and siRNAs are processed by the RNA surveillance machinery[J]. Nucleic Acids Res, 2016,44(7):3351-3363.
[16] Jarver P, Coursindel T, Andaloussi SEL, et al. Peptide-mediated cell and in vivo delivery of antisense oligonucleotides and siRNA[J]. Mol Ther Nucleic Acids, 2012,1(6):e27.
Effect comparison of small interfering RNA and antisense oligonucleotide in inhibition of RhoA expression of rat hepatic stellate cells
ZHANGYufeng1,YEKunying,ZHONGDan
(1TheSecondClinicalMedicalCollegeofHenanUniversityofTraditionalChineseMedicine,Zhengzhou450002,China)
ObjectiveTo compare the effects of small interfering RNA (siRNA) and antisense oligonucleotide (ASODN) in inhibition of RhoA expression of rat hepatic stellate cells.MethodsRat hepatic stellate cell line HSC-T6 was divided into the siRNA group and ASODN group, respectively, and then each group was separately divided into subgroups A, B, C, and D. Cells in the subgroup A of the siRNA group and ASODN group were cultured normally, subgroup B was transfected with HK-A negative control plasmid, subgroup C with Rat1, and subgroup D with Rat2. After transfection for 48 h, the mRNA expression of RhoA and ColⅠin HSC-T6 cells of each group was detected by reverse-transcription polymerase chain reaction (RT-PCR), respectively; the content of hyaluronic acid (HA) and laminin (LN) in culture serum was measured by specific ELISA.ResultsThe expression of RhoA mRNA and Col I mRNA in the subgroup C of siRNA group and ASODN group was the lowest, and significant difference was found between subgroup A and subgroup C (bothP<0.05), but no significant difference was found between the rest of subgroups (allP>0.05). The mRNA expression of RhoA and Col Ⅰ in the subgroup C of the siRNA group was lower than that in the ASODN group (P<0.05). There was no significant difference in the subgroups A, B, and D between the siRNA group and ASODN group (allP>0.05). The levels of HA and LN in the supernate of subgroup C of the siRNA group and ASODN group were the lowest, and significant difference was found between subgroup A and subgroup C (bothP<0.05), but no significant difference was found between the rest of subgroups (allP>0.05). The levels of HA and LN in the supernate of subgroup C of the siRNA group were lower than those in the ASODN group (bothP<0.05). There was no significant difference in the subgroups A, B, and D between the siRNA group and ASODN group (allP>0.05).ConclusionBoth siRNA and ASODN can inhibit RhoA expression of rat HSC-T6 cells, and RNA interference mediated by Rat1 plasmids targeting RhoA can more effectively inhibit the formation of extracellular matrix HA, Col Ⅰ, and LN than that of ASODN.
small interfering RNA; antisense oligonucleotide; RhoA; hyaluronic acid; collagenⅠ; laminin; hepatic stellate cells
10.3969/j.issn.1002-266X.2017.34.002
R365;Q522
A
1002-266X(2017)34-0005-04
2017-01-03)
河南省中医药科学研究专项课题(2014ZY02027)。
张玉峰(1969-),男,硕士,副教授,副主任医师,主要研究方向为消化系统疾病的中西医治疗。E-mail: zhouyihb@163.com