浅谈数形结合在高中数学中的运用浅谈数形结合在高中数学中的运用

2015-05-30 17:09:46乐志刚
数学学习与研究 2015年7期
关键词:思想方法数形结合高中数学

乐志刚

【摘要】高中数学中有很多数学思想方法,其中数形结合思想是比较重要的一种,其将代数和几何的知识进行了有效的连接,用代数方法解决几何问题,用几何知识化解代数问题,成为一道连接两块知识的重要桥梁.本文浅谈该思想方法在高中数学知识中的运用.

【关键词】高中数学;数形结合;思想方法;以形辅数;以数解形

高中数学教学设计到三个层次方面的教学:其一是教材中最基本知识和基本技能的教学,即所谓的双基,近期课程纲要修订中将双基已经提升为四基的要求,即增加了基本思想方法和基本活动经验,这是教师教学的最基本要求;其二是教材中诸多知识的整合性学习,这是基于双基之上的一种教学层次;最后,高中数学最高层面的教学是思想方法的教学,只有学会思想方法,才能将变幻多端的试题寓于无形的解决方案中,这是高中数学教学的最终目标.《课程标准》正是这样描述的:要让学生掌握基本的数学思想方法,利用数学思想方法去解决问题.

高中数学思想方法中,数形结合思想是一种贯穿高中数学始终的数学思想方法.其核心在于用代数的方法解决一些几何问题,用几何的方法解决一些代数问题,将几何和代数两座孤岛用桥梁进行了合理的连接,让学生的脑海中建立起了数形互相转换的概念,培养其解决问题的多思路性、发散性、简捷性.

1.以形辅数

数形结合思想方法的作用之一,是以形辅数.用几何本质的图形来反映、解决代数问题是其思想的重要运用,来看两个相关的案例.

案例1 设有函数f(x)=a+-x2-4x和g(x)=43x+1,已知x∈[-4,0]时恒有f(x)≤g(x),求实数a的取值范围.

审题破题:x∈[-4,0]时恒有f(x)≤g(x),可以转化为x∈[-4,0]时,函数f(x)的图像都在函数g(x)的图像下方或者两图像有交点,利用图像解决代数中的不等式问题.

解析 f(x)≤g(x),即a+-x2-4x=43x+1,变形得-x2-4x=43x+1-a,

令y=-x2-4x,①

y=43x+1-a.②

① 变形得(x+2)2+y2=4(y≥0),即表示以(-2,0)为圆心,2为半径的圆的上半圆;

② 表示斜率为43,纵截距为1-a的平行直线系.

设与圆相切的直线为AT,AT的直线方程为:

y=43x+b(b>0),则圆心(-2,0)到AT的距离为d=|-8+3b|5,

由|-8+3b|5=2得,b=6或-23(舍去).

∴當1-a=6即a=-5时,f(x)≤g(x).

反思归纳:解决含参数的不等式和不等式恒成立问题,可以将题目中的某些条件用图像表现出来,利用图像间的关系以形助数,求方程的解集或其中参数的范围.

2.以数解形

以形解数最典型的代表是高中数学重要核心知识——解析几何.笛卡尔创立了坐标系之后,后代的数学大师们将平面解析几何放到坐标系中,轻松的用代数方法解决了几何问题,这是数形结合思想的另一方面的重要体现.

案例2 已知抛物线C:y2=4x,过点A(-1,0)的直线交抛物线C于P,Q两点,设AP=λAQ.(1)若点P关于x轴的对称点为M,求证:直线MQ经过抛物线C的焦点F;(2)若λ∈13,12,求|PQ|的最大值.

审题破题:(1)可利用向量共线证明直线MQ过F;(2)建立|PQ|和λ的关系,然后求最值.

(1)证明:设P(x1,y1),Q(x2,y2),M(x1,-y1).

∵AP=λAQ,

∴x1+1=λ(x2+1),y1=λy2,

∴y21=λ2y22,y21=4x1,y22=4x2,x1=λ2x2,∴λ2x2+1=λ(x2+1),λx2(λ-1)=λ-1.

∵λ≠1,∴x2=1λ,x1=λ,又F(1,0),

∴MF=(1-x1,y1)=(1-λ,λy2)=λ1λ-1,y2=λFQ,

∴直线MQ经过抛物线C的焦点F.

(2)解析:由(1)知x2=1λ,x1=λ,得x1x2=1,y22·y22=16x1x2=16,∵y1y2>0,∴y1y2=4,则|PQ|2=(x1-x2)2+(y1-y2)2=x21+x22+y21+y22-2(x1x2+y1y2)=λ+1λ2+4λ+1λ-12=λ+1λ+22-16,λ∈13,12,λ+1λ∈52,103,当λ+1λ=103,即λ=12时,|PQ|2有最大值1129,|PQ|的最大值为473.

反思归纳:求最值或求范围问题常见的解法有两种:(1)几何法.若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决,这就是几何法.(2)代数法.若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,这就是代数法.

总之,数形结合思想是高中数学极为重要的思想方法之一.以形辅数主要体现在函数相关知识的延伸,以数解形恰恰在解析几何中有着重要的体现.通过典型问题的渗透,努力培养学生数形结合思想方法的积累.

猜你喜欢
思想方法数形结合高中数学
数学课堂中的文化滋润策略
例谈高中数学中“转化与化归”思想的应用
考试周刊(2016年84期)2016-11-11 22:49:06
数形结合在解题中的应用
考试周刊(2016年86期)2016-11-11 07:55:59
把党的宗旨转化为党员干部的思想方法和工作方法研究
企业导报(2016年20期)2016-11-05 19:18:49
浅析数形结合方法在高中数学教学中的应用
用联系发展的观点看解析几何
高中数学数列教学中的策略选取研究
考试周刊(2016年77期)2016-10-09 10:58:31
调查分析高中数学课程算法教学现状及策略
考试周刊(2016年76期)2016-10-09 08:54:54
基于新课程改革的高中数学课程有效提问研究
考试周刊(2016年76期)2016-10-09 08:20:33
妙用数形结合思想优化中职数学解题思维探讨
成才之路(2016年25期)2016-10-08 10:21:28