吴长理
【摘 要】高中数学课程是义务教育后普通高级中学的一门主要课程,函数是高中数学课程的必修内容,在高中数学中对二次函数应用显得十分重要。首先,要进一步深入理解函数概念;其次,要理解二次函数的单调性,最值与图象;最后,二次函数的知识,可以准确反映学生的数学思维。
【关键词】高中数学;二次函数;函数概念;数学思维
《高中数学新课程标准》明确规定,高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。高中数学课程应具有基础性。函数是高中数学课程的必修内容,因此,在高中数学中对二次函数应用显得十分重要。那么,在高中数学教学中,如何深入研究应用二次函数呢?
一、要进一步深入理解函数概念
初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射?:A→B,使得集合B中的元素y=ax2+bx+c(a≠0)与集合A的元素X对应,记为?(x)= ax2+ bx+c(a≠0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:
类型I:已知?(x)= 2x2+x+2,求?(x+1)
这里不能把?(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。
二、要理解二次函数的单调性,最值与图象
在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-∞,-b2a]及[-b2a,+∞) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。
类型Ⅱ:画出下列函数的图象,并通过图象研究其单调性。
(1)y=x2+2|x-1|-1
(2)y=|x2-1|
(3)y= x2+2|x|-1
这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。
三、二次函数的知识,可以准确反映学生的数学思维
类型Ⅲ:设二次函数?(x)=ax2+bx+c(a>0)方程?(x)-x=0的两个根x1,x2满足0 (Ⅰ)当X∈(0,x1)时,证明X(x) (Ⅱ)设函数?(x)的图象关于直线x=x0对称,证明x0< x2。 解题思路: 本题要证明的是x(x),?(x) (Ⅰ)先证明x(x),令?(x)=?(x)-x,因为x1,x2是方程?(x)-x=0的根,?(x)=ax2+bx+c,所以能?(x)=a(x-x1)(x-x2) 因为0 根据韦达定理,有x1x2=ca∵ 0 (Ⅱ)∵?(x)=ax2+bx+c =a(x+-b-2a)2+(c-b2—4a),(a>0) 函数?(x)的图象的对称轴为直线x=-b-2a,且是唯一的一条对称轴,因此,依题意,得x0=-b-2a,因为x1,x2是二次方程ax2+(b-1)x+c=0的根,根据违达定理得,x1+x2=-b--1-a,∵x2-1-a<0,∴x0= -b-2a=12(x1+x2-1-a) 二次函数有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。 总之,二次函数的内容涉及很广,只有在高中数学教学中多关注这方面知识,才能对它的研究更深入。