董儒仪,杜 琪,吴盈茹,周 婷,水珊珊,2, ,张 宾,
(1.浙江海洋大学食品与药学学院,浙江舟山 316022;2.浙江省海洋开发研究院,浙江舟山 316021)
三疣梭子蟹(Portunus trituberculatus),属甲壳纲、十足目、梭子蟹科,俗称白蟹、梭子蟹,因其肉质细嫩、味道鲜美、营养丰富,而深受消费者喜爱,其也是我国沿海地区重要的经济海产品之一[1]。三疣梭子蟹捕获后极易发生死亡,其肌肉蛋白质在微生物和酶的作用下易分解成碱性含氮化合物,导致三疣梭子蟹可食用品质快速下降[2]。4 ℃冷藏是延长鲜活水产品货架期的有效地方式之一,能较好保持甲壳类水产品原有的风味[3]。目前,4 ℃冷藏也是三疣梭子蟹捕获进行后短期贮藏的首选方式。而随着冷藏时间延长,三疣梭子蟹可食用品质依旧会发生不可逆的劣变,探究其冷藏过程中肌肉品质特性变化规律,对优化三疣梭子蟹贮藏方式及提高蟹类产品经济价值具有重要意义。
近年来,越来越多的学者关注于三疣梭子蟹在不同贮藏条件下的肌肉品质变化。宗腊梅等[4]通过对三疣梭子蟹进行感官评价和挥发性盐基氮含量、K 值、pH 及硫代巴比妥酸反应物等理化指标测定,确定三疣梭子蟹在0 ℃贮藏时货架期可接受上限为9 d。黄琳等[5]研究发现,-40 ℃冻藏比-20 ℃冻藏对三疣梭子蟹肌肉蛋白质的破坏程度更小。Yang 等[6]研究镀冰衣处理对冻藏三疣梭子蟹品质的影响,发现镀冰衣处理可以改善冻藏三疣梭子蟹肌肉持水力和微观组织结构,同时可抑制肌肉脂质氧化和挥发性盐基氮含量的增加。目前,国内外对低温三疣梭子蟹肌肉品质变化研究仍处于起步阶段,并且对三疣梭子蟹不同部位肌肉品质特性变化情况,尚缺少系统性研究。因此,本研究以三疣梭子蟹为原料,测定肌肉pH、挥发性盐基氮和肌原纤维蛋白含量等理化指标,研究4 ℃冷藏对三疣梭子蟹腹部和螯足两个部位肌肉品质特性的影响,旨在探究三疣梭子蟹冷藏过程中腹部和螯足肌肉品质变化规律,为三疣梭子蟹冷藏贮存货架期提供理论参考。
活体三疣梭子蟹(250±50 g)购于浙江舟山国际水产城,购买后立即充氧包装并放入装有碎冰的泡沫箱内,30 min 内运回至实验室,并立即对其进行处理;氯化钠、氧化镁、硼酸、甲基红、溴甲酚绿、无水乙醇、三(羟甲基)氨基甲烷(Tris)、顺丁烯二酸、氯化钾、磷酸氢二钾、磷酸二氢钾、乙二醇双(2-氨基乙基醚)四乙酸(EGTA)、氯化镁等 国药集团化学试剂有限公司;0.1 mol/L 盐酸标准溶液 深圳市博林达科技有限公司;三氯乙酸(TCA)上海阿拉丁生化科技股份有限公司;三甲胺ELISA 检测试剂盒 江苏晶美生物科技有限公司;蛋白质定量测试盒 南京建成生物工程研究所;快速Lowry 法蛋白含量测定试剂盒 上海荔达生物科技有限公司。
H1750R 高速台式冷冻离心机 湖南湘仪实验室仪器开发有限公司;KDN-520 全自动凯氏定氮仪邦亿精密量仪(上海)有限公司;JC-HD 型智能水分活度测量仪 青岛聚创环保集团有限公司;U-2800 紫外可见分光光度计 日立(中国)有限公司;iMark 酶标仪 美国BIO-RAD 有限公司;UPR-I-5TNP 优普系列超纯水机 四川优普超纯科技有限公司。
1.2.1 样品处理 鲜活三疣梭子蟹洗净后,用解剖针扎蟹心快速处死,自封袋单只分装后置于4 ℃冷藏。每24 h 取蟹样品10~12 只,分别取腹部和螯足肌肉检测相关指标,每个指标重复测定3 次。
1.2.2 感官评定 采用定量描述分析法(QDA),将三疣梭子蟹样品置于同一光源下,拍照记录蟹腹部、背部、腹腔内部三个部位感官变化情况。参考Yang等[7]报道方法,对三疣梭子蟹腹部和螯足肌肉进行QDA 法感官评定。参照GB/T 16291.1-2012《感官分析 选拔、培训与管理评价员一般导则 第1 部分:优选评价员》[8]中的方法,经过多轮测试、培训和感官实验,最终选中8 名优选评价员(3 男5 女)组成感官评价员小组。评价小组通过对样品感官特性进行综合评价,写出各自描述词,经过讨论,最终确定三疣梭子蟹8 个感官描述词汇及定义。选取不同贮藏时间三疣梭子蟹肌肉组织样品,评价员根据表1 中感官描述词汇及定义,利用0~10 点标度法分别对每个感官特征进行评价。
表1 三疣梭子蟹感官描述词汇及定义Table 1 Sensory description vocabulary and definition of swimming crab
1.2.3 持水力(WHC)测定 取6×6 cm 方形尼龙网(三层;重量记作m1),称取2.0 g 块状腹部和螯足肌肉置于三层尼龙网上(重量记作m2),用尼龙网包裹好肌肉后,再用两层滤纸包裹置于底部放有棉花的离心管中,3000×g 离心10 min 后,再次称重(重量记作m3)。肌肉持水力计算公式如下所示。
1.2.4 水分含量和水分活度测定 参考GB 5009.3-2016 中直接干燥法,测定蟹肌肉中水分含量[9];参考GB 5009.238-2016 使用水分活度仪,测定蟹肌肉中水分活度[10]。
1.2.5 pH 测定 称取2.0 g 切碎肌肉样品,加入18 mL 生理盐水,用匀浆机在15000×g 条件下匀浆1 min,静置20 min 后,3000×g 下离心10 min(4 ℃),取上清液测定pH。
1.2.6 挥发性盐基氮(TVB-N)和三甲胺(TMA)含量测定 参考GB 5009.228-2016 中自动凯氏定氮仪法,测定蟹肌肉中TVB-N 含量[11];使用三甲胺ELISA检测试剂盒,测定蟹肌肉中TMA 含量,具体依据试剂盒操作说明进行。
1.2.7 TCA-可溶性肽含量测定 参考李学鹏[12]报道的方法,并稍作修改。准确称取2.0 g 切碎肌肉样品,加入18 mL 预冷的5% TCA 溶液,15000×g 条件下匀浆1 min。将匀浆液静置1 h,6800×g 离心15 min,取上清液。采用快速Lowry 法,测定上清液中TCA-可溶性肽含量,结果用mg/mL 表示。
1.2.8 水溶性蛋白含量测定 准确称取2.0 g 切碎肌肉样品,加入18 mL 生理盐水,15000×g 条件下匀浆1 min,静置20 min 后,3000 ×g 离心10 min(4 ℃),取上清液,用双缩脲法测定其中蛋白质含量。
1.2.9 肌原纤维蛋白含量及其小片化指数测定 肌原纤维蛋白含量:参考黄琳等[5]报道方法,并稍作修改。准确称取3.0 g 切碎肌肉样品,加入27 mL 20 mmol/L Tris-maleate 缓冲液(含50 mmol/L KCl,pH7.0),高速匀浆后置于8000×g 离心10 min,弃去上清液。重复两次上述操作后,收集沉淀,加入27 mL 20 mmol/L Tris-maleate 缓冲液(含0.6 mol/L KCl,pH7.0),高速匀浆后静置1.5 h,涡旋30 s 后于10000×g 条件下离心30 min,取上清液即为肌原纤维蛋白提取液,用双缩脲法测定蛋白质含量。肌原纤维小片化指数(MFI):参考Yang 等[13]报道方法,并稍作修改。称取2.0 g 切碎肌肉样品,加入30 mL MFI缓冲液(含100 mmol/L KCl,11.2 mmol/L K2HPO4,8.8 mmol/L KH2PO4,1 mmol/L EGTA 和1 mmol/L MgCl2),高速匀浆后(15000×g,1 min,每30 s 暂停10 s),5000×g 离心10 min。收集沉淀,加入30 mL预冷的MFI 缓冲液后,按上述匀浆离心条件重复操作一次。弃去上清液,用预冷的MFI 缓冲液将所得沉淀制成蛋白质浓度为(0.50±0.05)mg/mL 悬浊液,然后在540 nm 处测定吸光度A540,A540×200 即为肌原纤维小片化指数MFI。
采用Excel 2019、Origin 2021 和SPSS 27 对数据进行统计分析及作图,结果均以平均值±标准差表示,采用ANOVA 方差分析法分析显著性差异水平,P<0.05。
感官评价是评价水产品新鲜度和品质最直观的指标,在水产品品质评价方面被广泛应用[14]。由图1显示,新鲜三疣梭子蟹体表色泽鲜亮,背部呈青色,腹部呈白色,螯足与腹部连接紧实,肝胰腺轮廓分明。冷藏第5 d 时,三疣梭子蟹体表暗沉,背部呈青灰色,腹部呈灰白色,肢体松散易脱落,肝胰腺糊化、呈水样状。根据表1 中感官描述对三疣梭子蟹腹部和螯足肌肉品质进行打分,结果如图2 所示。随着冷藏时间延长,三疣梭子蟹腹部和螯足肌肉逐渐松散且由米白色逐渐转变成浅黄色,鲜香味逐渐被氨臭味和刺激性气味所替代,汁液流出量逐渐增多,肌肉黏性增强。与腹部肌肉相比,螯足肌肉随着贮藏时间延长肌肉松散程度下降更为明显、黏附性更强、汁液流出量更多、刺激性气味和氨臭味更强,可能是因为螯足肌肉中内源酶活性更强,造成螯足肌肉比腹部肌肉自溶作用更明显,进而导致螯足肌肉劣变速度比腹部肌肉更快;相反,腹部肌肉更易由米白色转变成浅黄色。宋雪[15]从外观、肉质和气味三方面对死后96 h 内三疣梭子蟹腹部和螯足肌肉品质进行综合打分,发现与腹部肌肉相比,螯足肌肉感官评分在死后24 h 内更低,本研究结果与其相似。
图1 冷藏三疣梭子蟹品质变化Fig.1 Changes in quality of swimming crab during chilled storage
图2 冷藏三疣梭子蟹腹部(A)和螯足(B)肌肉QDA 图Fig.2 QDA of the abdomen (A) and cheliped (B) muscle of swimming crab during chilled storage
持水力表示肌肉组织阻碍其水分流失的能力,通常采用离心前后肌肉组织重量差表示持水力的大小[16]。由图3 可知,新鲜三疣梭子蟹腹部和螯足肌肉持水力分别为88.86%和84.72%,二者无显著性差异(P>0.05)。该结果与金超等测得的新鲜三疣梭子蟹蟹肉持水力结果相似[17]。随着贮藏时间延长,三疣梭子蟹腹部和螯足肌肉持水力均呈不断下降趋势,贮藏末期腹部和螯足肌肉分别下降了36.27%和37.46%。有研究表明,水产动物离水死后,肌肉中部分肌糖原经酵解产生乳酸,引起pH 下降,致使肌肉组织松散、肌肉蛋白质束缚水分的能力减弱,同时肌肉收缩使得肌肉中水分流出,进而导致三疣梭子蟹肌肉持水力下降[18];此外,在贮藏过程中肌原纤维蛋白和结缔组织蛋白在内源性蛋白酶作用,使其发生降解,导致纤维间隙不断增大,保水能力不断下降[19]。在整个贮藏周期中,除贮藏第0 和3 d 外,三疣梭子蟹腹部肌肉持水力均显著高于螯足肌肉(P<0.05),这与感官评价结果相一致。
图3 冷藏三疣梭子蟹肌肉持水力变化Fig.3 Changes in water holding capacity of swimming crab muscle during chilled storage
如图4A 所示,随着冷藏时间延长,三疣梭子蟹腹部和螯足肌肉水分含量均呈下降趋势,贮藏5 d后,腹部肌肉水分含量由新鲜时的83.73%下降到80.36%,螯足肌肉水分含量由新鲜时的81.48%下降到78.44%。原因可能是随着冷藏时间延长,三疣梭子蟹肌肉组织结构破坏,导致肌肉组织中水分流失,进而导致肌肉水分含量下降[20]。在整个冷藏期间,三疣梭子蟹腹部肌肉水分含量均显著大于螯足肌肉(P<0.05)。张龙[21]在研究中华绒螯蟹肌肉品质特性时发现,中华绒螯蟹腹部肌肉水分含量比螯足肌肉水分含量高,本研究结果与之相似。
图4 冷藏三疣梭子蟹肌肉水分含量(A)和水分活度(B)变化Fig.4 Changes in water content (A) and water activity (B) of swimming crab muscle during chilled storage
水分活度在水产品贮藏过程中起着关键作用,与微生物生长密切相关,是决定食品腐败变质和货架期的重要参数[22]。如图4B 所示,新鲜三疣梭子蟹腹部和螯足肌肉水分活度分别为0.986 和0.981,说明三疣梭子蟹肌肉新鲜度很高[23]。随着贮藏时间延长,三疣梭子蟹腹部和螯足肌肉水分活度均呈不断下降趋势。可能是因为三疣梭子蟹肌肉处于高水分环境中,在贮藏过程中内源性蛋白酶发挥作用,水解肌肉蛋白质纤维,造成肌肉结构破坏,肌肉内游离水和部分结合水析出,进而造成水分活度下降[24]。这与三疣梭子蟹肌肉持水力和水分含量变化趋势相似。在贮藏过程中,三疣梭子蟹腹部肌肉水分活度均比螯足肌肉高,说明腹部肌肉新鲜度比螯足肌肉更优。
肌肉pH 是评价水产品新鲜度的重要指标[25]。由图5 可知,新鲜三疣梭子蟹腹部和螯足肌肉pH 分别为6.38 和6.95,随着贮藏时间延长,三疣梭子蟹腹部和螯足肌肉pH 均呈先下降后上升的趋势(P<0.05)。研究表明,水产动物在死亡后会逐渐停止呼吸,体内的存储糖易分解产生乳酸,使肌肉pH 下降[26]。随后由于冷藏过程中肌肉蛋白质在微生物和酶的作用下分解产生氨、吲哚、三甲胺等碱性物质,使肌肉pH 逐渐升高[27]。在整个贮藏周期,三疣梭子蟹螯足肌肉pH 均显著大于腹部肌肉pH(P<0.05)。由于甲壳类动物的非蛋白含氮化合物含量高,pH 总体偏高,建议pH 可接受上限约为8.0[28]。腹部肌肉pH 在贮藏第5 d 时为7.7,未超过可接受上限;而螯足肌肉pH 在贮藏第4 d 时已达到7.99,趋近可接受上限。说明在贮藏过程中,三疣梭子蟹腹部肌肉冷藏保鲜效果比螯足肌肉更好。
图5 冷藏三疣梭子蟹肌肉pH 变化Fig.5 Changes in pH of swimming crab muscle during chilled storage
TVB-N 含量能够反映水产品肌肉中含氮化合物降解情况,这类含氮化合物在内源酶及微生物作用下会降解产生具有挥发性的碱性物质,影响水产品新鲜度[29]。图6A 显示冷藏期间三疣梭子蟹腹部和螯足肌肉TVB-N 含量变化情况。新鲜三疣梭子蟹腹部和螯足肌肉TVB-N 含量分别为9.04 mg/100 g 和10.85 mg/100 g,两者无显著性差异(P>0.05)。随着贮藏时间延长,三疣梭子蟹腹部和螯足肌肉TVB-N含量均呈不断上升趋势。腹部肌肉在贮藏第4~5 d时,螯足肌肉在贮藏第3~5 d 时TVB-N 含量快速增加,出现这种现象的原因可能是丝氨酸蛋白酶、组织蛋白酶的高活力以及微生物活动加强,分解大量氨基酸,脱氨基速度加快[30]。GB 2733-2015[31]中规定海蟹TVB-N 含量超出25 mg/100 g,即认为不可食用。腹部肌肉TVB-N 含量在第4 d 时为18.52 mg/100 g仍低于国家标准,而螯足肌肉TVB-N 含量在第3 d时达到26.66 mg/100 g,已超出国家标准,说明螯足肌肉微生物活动较腹部肌肉频繁。有研究表明[32],较低的pH 能抑制肌肉微生物活性,与胺类物质的生长密切相关,致使腹部肌肉冷藏保鲜效果比螯足肌肉好,该研究结果与三疣梭子蟹肌肉pH 结果相符。
图6 冷藏三疣梭子蟹肌肉TVB-N 含量(A)和TMA含量(B)变化Fig.6 Changes in TVB-N content (A) and TMA content (B) of swimming crab muscle during chilled storage
TMA 是造成鱼腥味的主要化合物,由氧化三甲胺在酶和微生物的作用下还原而来[33]。TMA 含量越高,说明水产品鲜度值越低,腐败程度越严重。图6B 为冷藏过程中三疣梭子蟹腹部和螯足肌肉TMA 含量变化图。由图可知,三疣梭子蟹腹部和螯足肌肉初始TMA 含量分别为9.96 和15.29 μg/g,两者无显著性差异(P>0.05)。随着贮藏时间延长,腹部和螯足肌肉TMA 含量均呈显著上升趋势,且在贮藏第3~5 d 期间上升速度显著快于贮藏第0~3 d(P<0.05)。原因可能是贮藏后期肌肉组织中微生物生长旺盛,加快了氧化三甲胺还原成三甲胺的速度[34]。这与冷藏过程中三疣梭子蟹肌肉TVB-N 含量变化结果相似。有研究表明,TMA 含量超过35 μg/g 鱼肉开始腐败变质,说明腹部肌肉第3 d 时开始腐败,而螯足肌肉第2 d 时就已开始腐败[35]。此外,由于甲壳类水产品肌肉中存在大量的游离氨基酸和含氮化合物,使得三疣梭子蟹肌肉极易被腐败微生物群快速降解,进而导致三疣梭子蟹肌肉TVB-N 含量和TMA含量高于其他水产品[36]。
TCA-可溶性肽含量通常用来反映蛋白质降解程度[37],含量越高,说明蛋白质降解程度越高。如图7所示,新鲜三疣梭子蟹腹部和螯足肌肉TCA-可溶性肽含量分别为0.318 和0.373 mg/mL。随着冷藏时间延长,三疣梭子蟹腹部和螯足肌肉TCA-可溶性肽含量呈显著上升趋势(P<0.05),表明在贮藏过程中,三疣梭子蟹肌肉蛋白质降解,生成小分子肽。TCA-可溶性肽含量前期上升可能是由于肌肉中内源性蛋白酶的降解作用,贮藏后期内源酶和微生物共同作用加速蛋白质降解[38]。这与Wang 等[39]在研究大眼金枪鱼在0 和4 ℃冷藏过程中TCA-可溶性肽含量变化结果相似。比较腹部和螯足两个部位肌肉TCA-可溶性肽含量发现,贮藏第0~2 d 时,腹部和螯足肌肉TCA-可溶性肽含量差异性显著(P<0.05),第3~5 d时,腹部和螯足肌肉TCA-可溶性肽含量无显著性差异(P>0.05)。
图7 冷藏三疣梭子蟹肌肉TCA-可溶性肽含量变化Fig.7 Changes in TCA-soluble peptide content of swimming crab muscle during chilled storage
水溶性蛋白主要成分为肌浆蛋白,包括与糖酵解相关的酶类,肌酸激酶以及肌红蛋白等水溶性物质[40]。如图8 所示,0 d 时三疣梭子蟹腹部和螯足肌肉水溶性蛋白含量分别为47.44 和35.60 mg/g,第0~2 d 时三疣梭子蟹腹部和螯足肌肉水溶性蛋白含量均呈显著上升趋势(P<0.05),可能是由于盐溶性蛋白降解成一些溶于水的小分子蛋白,使得水溶性蛋白含量上升;随着贮藏时间延长,第2~5 d 时腹部和螯足肌肉水溶性蛋白含量均呈显著下降趋势(P<0.05),后期呈下降趋势是因为水溶性蛋白自身发生降解[41]。这与汪经邦等[42]在研究暗纹东方鲀低温贮藏期间水溶性蛋白的变化趋势相似。在整个贮藏过程中,腹部肌肉水溶蛋白含量均显著大于螯足肌肉(P<0.05),说明4 ℃冷藏过程中腹部肌肉蛋白质品质优于螯足肌肉,这与新鲜度指标结果基本吻合。
图8 冷藏三疣梭子蟹肌肉水溶性蛋白含量变化Fig.8 Changes in water-soluble protein content of swimming crab muscle during chilled storage
肌原纤维蛋白是一种重要的结构蛋白,是评价水产品肌肉质地软化,蛋白质降解的重要指标[43]。如图9A 所示,随着冷藏时间延长,三疣梭子蟹腹部和螯足肌肉肌原纤维蛋白含量均呈显著下降趋势(P<0.05)。新鲜三疣梭子蟹腹部和螯足肌肉肌原纤维蛋白含量分别为87.85 mg/g 和77.29 mg/g;在冷藏第5 d 时,三疣梭子蟹腹部和螯足肌肉肌原纤维蛋白含量分别下降了38.11%和49.51%,螯足肌肉肌原纤维蛋白含量下降幅度较腹部肌肉更显著,且螯足肌肉肌原纤维蛋白含量显著小于腹部肌肉(P<0.05)。在整个贮藏期间,三疣梭子蟹腹部和螯足肌肉受微生物作用,肌原纤维蛋白降解。有研究表明,丝氨酸蛋白酶是导致三疣梭子蟹肌肉肌原纤维蛋白降解的原因之一[44]。在冷藏过程中,三疣梭子蟹肌肉蛋白质变性,使得细胞收缩间隙增大,进而导致腹部和螯足肌肉持水力和水分含量下降,影响三疣梭子蟹肌肉品质。这一结果与三疣梭子蟹肌肉冷藏过程中理化指标结果一致,进一步证明三疣梭子蟹腹部肌肉品质劣变速度较螯足肌肉慢,三疣梭子蟹腹部贮藏时间较螯足长。
图9 冷藏三疣梭子蟹肌肉肌原纤维蛋白含量(A)及其小片化指数(B)变化Fig.9 Changes in myofibrillar protein content (A) and its fragmentation index (B) of swimming crab muscle during chilled storage
肌原纤维小片化指数(MFI)是表征肌原纤维蛋白降解程度的一个重要指标,反映了肌原纤维以及骨架蛋白的完整性[45]。由图9B 可知,随着冷藏时间延长,三疣梭子蟹腹部和螯足肌肉MFI 值均呈显著上升趋势(P<0.05),分别由最初的72.47 和78 上升至第5 d 的112.33 和117.8。这可能是因为随着冷藏时间延长,肌原纤维完整性受到破坏,三疣梭子蟹肌肉肌原纤维蛋白降解,小片化现象加剧。范铭良等[46]在研究冷藏过程中罗非鱼鱼肉肌原纤维变化情况时发现,贮藏时间越长,罗非鱼鱼肉肌原纤维碎片化现象越严重,MFI 值越高,本实验结果与其研究结果一致。在整个贮藏周期,除贮藏第3 d 外,其余时间点三疣梭子蟹螯足肌肉MFI 值均显著大于腹部肌肉MFI 值(P<0.05),说明在冷藏过程中三疣梭子蟹螯足肌肉蛋白质受到破坏的程度比腹部肌肉更严重。
本研究以三疣梭子蟹为研究对象,通过比较分析冷藏过程中腹部和螯足肌肉品质特性变化发现,三疣梭子蟹腹部肌肉感官评价整体优于螯足肌肉。随着冷藏时间延长,三疣梭子蟹腹部和螯足肌肉水分含量、持水力、肌原纤维蛋白含量等均呈下降趋势;其三甲胺、TCA-可溶性肽含量和肌原纤维小片化指数均呈上升趋势。冷藏第4 d 时,三疣梭子蟹螯足肌肉pH 趋近8.0,TVB-N 含量超过国家标准25 mg/100 g,肌肉品质已经腐败变质,超出可接受范围,而腹部肌肉品质整体优于螯足肌肉。由此可得,冷藏条件下三疣梭子蟹腹部肌肉保鲜效果比螯足肌肉更好。本研究为冷藏三疣梭子蟹品质劣变及调控技术提供理论参考,同时为后续研究冷藏过程中,三疣梭子蟹腹部和螯足肌肉间品质相互影响的作用机制提供思路。