条件概率与全概率公式常见考点与方法点拨

2023-09-15 05:33:10河南省濮阳市第一高级中学梁文强
关键词:样本空间黑球白球

■河南省濮阳市第一高级中学 梁文强

条件概率与全概率公式是新教材新增内容,它不仅是高考考查的重点,也是后续学习概率的基础。下面归纳条件概率与全概率公式常见考点,并对相关解题方法进行剖析,从而加深对条件概率和全概率公式中问题的理解与把握。

考点一 条件概率应用

例1在5道试题中有3道代数题和2道几何题,每次从中随机抽取1道题,抽出的题不再放回,求:

(1)第一次抽到代数题且第二次抽到几何题的概率;

(2)在第一次抽到代数题的条件下,第二次抽到几何题的概率。

解析:设事件A为第一次抽到代数题,事件B为第2次抽到几何题,则事件AB表示第一次抽到代数题且第二次抽到几何题。

(2)在第一次抽取到代数题的条件下第二次抽到几何题的概率,就是事件A发生的条件下,事件B发生的概率,显然P(A)=

利用条件概率公式得:

点评:本题解法是一种基于样本空间Ω,借助古典概型概率公式,先求出样本空间包含的基本事件数n(Ω),再求事件AB所包含的基本事件数n(AB),得到P(B|A)=

考点二 乘法公式应用

例2某工厂的产品有4%的废品率,在100件合格品中有75件一等品,求在该厂的产品中任取一件是一等品的概率。

解析:设事件A为任取的一件是合格品,事件B为任取的一件是一等品,则P(A)==0.96,P(B|A)=0.75。

所以P(AB)=P(A)P(B|A)=0.96×0.75=0.72。

点评:乘法公式给出了一种计算“积事件”概率的求法,当直接计算P(AB)不好计算时,可以先迂回求出P(A)及P(B|A)或先求出P(B)及P(A|B),再利用乘法公式P(AB)=P(A)P(B|A)=P(B)P(A|B)求解即可,概率的乘法公式反映了知二求一的方程思想。

考点三 独立事件判断

例3有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球,事件A表示第一次取出的球的数字是1,事件B表示第二次取出的球的数字是2,事件C表示两次取出的球的数字之和是8,事件D表示两次取出的球的数字之和是7,则( )。

A.事件A与事件C相互独立

B.事件A与事件D相互独立

C.事件B与事件C相互独立

D.事件C与事件D相互独立

由于P(AD)=P(A)P(D),故选B。

点评:判断两个事件是否相互独立,有两种方法,一种方法是直接利用两个事件相互独立的意义来判断,即验证P(AB)=P(A)·P(B)是否成立;另一种方法是利用条件概率知识,当P(B)>0时,A与B相互独立的充要条件是P(A|B)=P(A),即验证P(A|B)=P(A)是否成立。

考点四 全概率公式应用

例4有一批同一型号的产品,已知其中由一厂生产的占30%,二厂生产的占50%,三厂生产的占20%,又知这三个厂产品的次品率分别为2%,1%,1%,问从这批产品中任取一件是次品的概率是多少。

解析:设B为任取一件产品为次品,Ai表示任取一件为i厂的产品,i=1,2,3。

且P(A1)=0.3,P(A2)=0.5,P(A3)=0.2,P(B|A1)=0.02,P(B|A2)=0.01,P(B|A3)=0.01。

由全概率公式P(B)=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=0.3×0.02+0.5×0.01+0.2×0.01=0.013。

点评:当直接求事件B发生的概率不好求时,可以采用化整为零的方式,先找到样本空间Ω的一个划分,Ω=A1∪A2∪…∪An,A1,A2,…,An两两互斥,将A1,A2,…,An看成是导致B发生的一系列原因,这样事件B就被分解成了n个部分,分别计算P(B|A1),P(B|A2),…,P(B|An),然后借助全概率公式间接求出事件B发生的概率。

考点五 贝叶斯公式应用

例5已知甲箱内有3个白球2个黑球,乙箱内有3个黑球2个白球,丙箱内有2个白球2个黑球,现任取一箱,再从箱中任取一球,结果发现是白球,现在事件A=“此球为白球”,事件H1=“此球属于甲箱”,则概率P(H1|A)=( )。

解析:设此球属于乙箱为事件H2,此球属于丙箱为事件H3。

点评:贝叶斯公式是用于寻找原因的概率计算公式,即在第二阶段某一个结果是已知的,需要求的是此结果由第一阶段某一个结果引起的概率,类似于求条件概率。熟记这一特征,再遇到相关的题目可以快速地选择恰当的公式进行计算。

本文通过几个重要的实例分析,归纳出条件概率与全概率公式考查的方向,以及解决问题的方法技巧,体会运用概率思想分析和解决问题的重要性。

猜你喜欢
样本空间黑球白球
高中数学新教材一个探究试验的商榷
中学数学(2023年23期)2023-12-16 10:47:46
球的颜色
概率统计中样本空间刍议
滚出黑球来
三条腿的黑球
浅谈高校古典概率的教学
全概率公式的教学方法研究
考试周刊(2016年26期)2016-05-26 20:19:51
走迷宫
击球兜兜转
盒子里装的是什么球?