黎真
【摘要】求数列的通项公式是高考,竞赛及各类考试的重要内容,求解数列通项的关键是通过变形,将已知数列转化为周期数列,等差或等比数列等可求解通项公式的数列.本文利用特征方程法研究两类常见的递推数列通项的求法.
【关键词】递推数列;特征方程;数列通项
类型1形如an+2=aan+1+ban(a,b为常数)的递推數列
结论1对于形如an+2=aan+1+ban的递推数列,它的特征方程是x2=ax+b,即x2-ax-b=0,记它的两根分别为x1,x2.
(1)若x1≠x2,即Δ=a2+4b>0.
令bn=an+1-x1an,则
{bn}是首项为a2-x1a1,公比为x2的等比数列,
an=Axn1+Bxn2(A,B是常数);
(2)若x1=x2=x,即Δ=a2+4b=0.
令bn=an+1-xan,则
{bn}是首项为a2-xa1,公比为x的等比数列,
an=(An+B)xn(A,B是常数);
(3)若特征方程x2=ax+b无实数解,即Δ=a2+4b<0,此时数列{an}是周期数列.
证明(1)设an+2-x1an+1=x2(an+1-x1an),x1,x2是待定系数,①
得an+2=(x1+x2)an+1-x1x2an,
与an+2=aan+1+ban对比,得
x1+x2=a,x1x2=-b,
所以x1,x2是方程x2-ax-b=0的两根,
即x1,x2是数列{an}的特征方程x2=ax+b的两根.
令bn=an+1-x1an,
由①,得bn+1=x2bn,
所以{bn}是首项为a2-x1a1,公比为x2的等比数列,
故bn=(a2-x1a1)xn-12,
即bn=an+1-x1an=(a2-x1a1)xn-12.
记k=a2-x1a1,则有
an+1-x1an=kxn-12.②
由②,得an-x1an-1=kxn-22,
x1an-1-x21an-2=x1(an-1-x1an-2)=kx1xn-32,
x21an-2-x31an-3=x21(an-2-x1an-3)=kx21xn-42,
x31an-3-x41an-4=x31(an-3-x1an-4)=kx31xn-52,
……
xn-31a3-xn-21a2=xn-31(a3-x1a2)=kxn-31x12,
xn-21a2-xn-11a1=xn-21(a2-x1a1)=kxn-21x02,
将以上n-1个式子相加,得
an=a1xn-11+∑n-2i=0kxi1xn-2-i2.
又∑n-2i=0kxi1xn-2-i2=k∑n-2i=0xi1xn-2-i2
=k·xn-221-x1x2n-11-x1x2
=kx2-x1(xn-12-xn-11),
所以an=a1xn-11+kx2-x1(xn-12-xn-11)
=a1-kx2-x1xn-11+kx2-x1·xn-12
=a1-a2-x1a1x2-x1xn-11+a2-x1a1x2-x1·xn-12
=a1x2-a2x2-x1·xn-11-a1x1-a2x2-x1·xn-12
=a1x2-a2(x2-x1)x1·xn1+-a1x1-a2(x2-x1)x2xn2,
故an=Axn1+Bxn2(A,B是常数).
(2)设an+2-x1an+1=x2(an+1-x1a1),x1,x2是待定系数,
由(1),知x1,x2是数列{an}的特征方程x2=ax+b的两根,
又x1=x2=x,
所以x1+x2=2x=a,x1x2=x2=-b.
令bn=an+1-xan,则
bn+1=an+2-xan+1
=(aan+1+ban)-xan+1
=(a-x)an+1+ban
=(2x-x)an+1-x2an
=xan+1-x2an
=x(an+1-xan),
所以bn+1=xbn,
即{bn}是首项为a2-xa1,公比为x的等比数列,
故bn=(a2-xa1)xn-1,
即an+1-xan=(a2-xa1)xn-1.
同(1)的方法,得
an-xan-1=(a2-xa1)xn-2,
xan-1-x2an-2=(a2-xa1)xn-2,
……
xn-3a3-xn-2a2=(a2-xa1)xn-2,
xn-2a2-xn-1a1=(a2-xa1)xn-2,
将以上n-1个式子相加,得
an=a1xn-1+(n-1)(a2-xa1)xn-2
=[xa1+(n-1)(a2-xa1)]xn-2
=(xa1+a2n-a2-xa1n+xa1)xn-2
=[(a2-xa1)n+(2xa1-a2)]xn-2
=a2-xa1x2·n+2xa1-a2x2xn,
故an=(An+B)xn(A,B是常数).
(3)略.
例1已知数列{an}满足a1=1,a2=53,an+2=53an+1-23an(n∈N+),求数列{an}的通项公式.
解数列{an}的特征方程为
x2=53x-23,
解得x1=23,x2=1.
由结论1(1),知
an=A23n+B·1n=A23n+B,
由初始值a1=1,a2=53,可解得
A=-3,B=3,
所以an=31-23n.
例2已知数列{an}满足a1=7,a2=29,an+2=7an+1-10an(n∈N+),求数列{an}的通项公式.
解法1特征方程法
数列{an}的特征方程为
x2=7x-10,
解得x1=5,x2=2.
由结论1(1),知an=A·5n+B·2n,
由初始值a1=7,a2=29,可解得
A=1,B=1,
所以an=5n+2n.
解法2特征方程法
由结论1(1),知令bn=an+1-5an,
则{bn}是首项为a2-5a1=-6,公比为2的等比数列,
即bn=-6×2n-1=-3×2n.
由bn=an+1-5an=-3×2n,
得an=5n+2n.
(过程略,仿结论1的证明过程)
解法3待定系數法
设an+2+xan+1=y(an+1+xan),(*)
即an+2=(y-x)an+1+xyan,
与an+2=7an+1-10an对比,得
y-x=7,xy=-10,
解得x=-2,y=5,或x=-5,y=2.
当x=-2,y=5时,(*)式即为
an+2-2an+1=5(an+1-2an).
设bn=an+1-2an,则有
bn+1=5bn,
所以数列{bn}是首项为a2-2a1=15,公比为5的等比数列,
故bn=an+1-2an=15×5n-1=3×5n.①
当x=-5,y=2时,(*)式即为
an+2-5an+1=2(an+1-5an).
设cn=an+1-5an,则有
cn+1=2cn,
所以数列{cn}是首项为a2-5a1=-6,公比为2的等比数列,
故cn=an+1-5an=-6×2n-1=-3×2n.②
由①②,得an=5n+2n(n∈N+),
所以数列{an}的通项公式是an=5n+2n.
例3已知数列{an}满足a1=1,a2=2,an+2=6an+1-9an(n∈N+),求数列{an}的通项公式.
解法1数列{an}的特征方程为
x2=6x-9,
解得x1=x2=3.
由结论1(2),知
an=(An+B)xn=(An+B)·3n,
由初始值a1=1,a2=2,可解得
A=-19,B=49,
所以an=-19n+49·3n=(4-n)3n-2.
解法2观察an+2=6an+1-9an,
得an+2-3an+1=3(an+1-3an),下略.
例4已知数列{an}满足a1=1,a2=2,an+2=an+1-an(n∈N+),求a2022.
解数列{an}的特征方程为x2=x-1,此方程无实根.
由结论1(3),知数列{an}是周期数列.
由a1=1,a2=2,an+2=an+1-an分别计算可得
a1=1,a2=2,a3=1,a4=-1,a5=-2,
a6=-1,a7=1,a8=2,…
所以{an}是周期为6的周期数列,
又2022÷6=337,
所以a2022=a6=-1.
类型2形如an+1=aan+bcan+d(a,b,c,d为常数)的递推数列
结论2对于形如an+1=aan+bcan+d的递推数列,它的特征方程是x=ax+bcx+d,即cx2+(d-a)x-b=0,记它的两根分别为x1,x2.
(1)若x1≠x2,即Δ=(d-a)2+4bc>0.
令bn=an-x1an-x2,则
{bn}是首项为a1-x1a1-x2,公比为a-cx1a-cx2的等比数列,
an=x2+x2-x1a1-x1a1-x2·a-cx1a-cx2n-1-1.
(2)若x1=x2=x,即Δ=(d-a)2+4bc=0.
令bn=1an-x,则
{bn}是首项为1a1-x,公差为ca-cx的等差数列,
an=11a1-x+(n-1)·ca-cx+x.
(3)若特征方程x=ax+bcx+d无实数解,即Δ=(d-a)2+4bc<0,此时数列{an}是周期数列.
证明(1)由数列{an}的特征方程
x=ax+bcx+d,
即cx2+(d-a)x-b=0的两根为x1,x2,
得cx21-ax1=b-dx1,cx22-ax2=b-dx2,
于是an+1-x1an+1-x2=aan+bcan+d-x1aan+bcan+d-x2
=aan+b-x1(can+d)aan+b-x2(can+d)
=(a-cx1)an+cx21-ax1(a-cx2)an+cx22-ax2
=(a-cx1)an-(a-cx1)x1(a-cx2)an-(a-cx2)x2
=a-cx1a-cx2·an-x1an-x2.
令bn=an-x1an-x2,则
{bn}是首项为a1-x1a1-x2,公比为a-cx1a-cx2的等比数列,
所以bn=a1-x1a1-x2·a-cx1a-cx2n-1.
由bn=an-x1an-x2,得
an=x2bn-x1bn-1=x2+x2-x1bn-1
=x2+x2-x1a1-x1a1-x2·a-cx1a-cx2n-1-1.
(2)由数列{an}的特征方程x=ax+bcx+d,
即cx2+(d-a)x-b=0的两根为x1=x2=x,
得cx2+(d-a)x-b=0,x1+x2=2x=a-dc,
即cx2-ax=b-dx,d=a-2cx.
于是1an+1-x=1aan+bcan+d-x
=can+daan+b-x(can+d)
=can+d(a-cx)an+(b-dx)
=can+(a-2cx)(a-cx)an+(cx2-ax)
=c(an-x)+(a-cx)(a-cx)an-x(a-cx)
=c(an-x)+(a-cx)(a-cx)(an-x)
=1an-x+ca-cx.
令bn=1an-x,則
{bn}是首项为1a1-x,公差为ca-cx的等差数列,
所以bn=1a1-x+(n-1)·ca-cx.
由bn=1an-x,得
an=1bn+x=11a1-x+(n-1)·ca-cx+x.
(3)略.
例5已知数列{an}满足a1=2,an+1=4an+3an+2(n∈N+),求数列{an}的通项公式.
解法1数列{an}的特征方程为
x=4x+3x+2,
即x2-2x-3=0,
解得x1=-1,x2=3.
由结论2(1)知,令bn=an+1an-3,则
{bn}是以a1+1a1-3=-3为首项,4-1×(-1)4-1×3=5为公比的等比数列,
所以bn=-3×5n-1,
由bn=an+1an-3,得
an=3+4bn-1=3-43×5n-1+1.
解法2由结论2(1)及
a1=2,a=4,c=1,x1=-1,x2=3,
知an=x2+x2-x1a1-x1a1-x2·a-cx1a-cx2n-1-1
=3+3-(-1)2-(-1)2-3×4-(-1)4-3n-1-1
=3+4-3×5n-1-1
=3-43×5n-1+1.
例6已知数列{an}满足a1=4,an+1=4an-1an+2(n∈N+),求数列{an}的通项公式.
解法1数列{an}的特征方程为
x=4x-1x+2,
解得x1=x2=1.
由结论2(2)知,令bn=1an-1,则
{bn}是首项为1a1-1=13,公差为14-1×1=13的等差数列,
所以bn=13+(n-1)×13=13n,(
由bn=1an-1,得an=1bn+1=3n+1.
解法2由结论2(2)及
a1=4,a=4,c=1,x=1,
知an=11a1-x+(n-1)·ca-cx+x
=114-1+(n-1)·14-1+1
=3n+1.
例7已知数列{an}中,a1=2,an+1=1+an1-an(n∈N+),记数列{an}的前n项的乘积为∏n,求∏2023.
解数列{an}的特征方程为
x=1+x1-x,
即x2+1=0,此方程无实数解.
由结论2(3),知数列{an}是周期数列.
由a1=2,an+1=1+an1-an,得
a1=2,a2=-3,a3=-12,a4=13,
a5=2,a6=-3,…
所以{an}是周期为4的周期数列.
又2023÷4=505……3,
a1a2a3a4=2×(-3)×-12×13=1,
所以∏2023=a1a2a3…a2022a2023
=(a1a2a3a4)505·a1a2a3
=a1a2a3
=2×(-3)×-12=3.
推广形如an+1=aa2n+bcan+d的递推数列,它的特征方程是x=ax2+bcx+d,求其通项的过程与类型2相似,过程略.