段喜玲 张晓斌 吴波勇
摘 要:2020年高考数学试题中的圆锥曲线与方程部分考查内容紧扣高中数学课程标准,分值、结构稳定,试题突出对“四基”的考查,注重圆锥曲线与其他知识的结合,注重对数学思维和数学学科核心素养的考查. 试题体现基础性、应用性、综合性等特点,以基础知识的考查为载体,将对学生分析问题、解决问题能力的考查蕴含在解题过程之中,以实现对学生数学学科核心素养的考查. 基于2020年高考试题的命题分析,给出高考复习建议,有效引导高三复习.
关键词:圆锥曲线;命题分析;数形结合;数学运算
圆锥曲线是广泛应用于科学研究及生产和生活中的曲线,是高中数学中几何与代数知识的重要组成部分,是高中学生运用平面直角坐标系将曲线与方程、几何与代数融会贯通的重要载体,更是让学生体验和领悟数与形相互转化过程的重要途径,在高考数学中占有较大的比重. 2020年高考数学试卷中圆锥曲线与方程专题部分的试题,着重考查圆锥曲线的定义、方程,以及简单的几何性质,立足“四基”,凸显基础性;注重对数形结合、代数方法与几何问题化归的考查,立意能力,在数与形之间彰显综合性、应用性;重视对数学运算、逻辑推理、直观想象等数学学科核心素养的考查,立旨素养,引导数学教学,实现数学学科的育人价值. 同时,与往年相比,试题结构和难度保持稳定,既体现对主线内容、核心概念、数学本质考查的连贯性,也体现了对学生的人文关怀.
一、考查内容分析
2020年全國各地高考数学试卷共10套13份,具体为全国Ⅰ卷(文、理)、全国Ⅱ卷(文、理)、全国Ⅲ卷(文、理)、全国新高考Ⅰ卷、全国新高考Ⅱ卷、北京卷、上海卷、天津卷、江苏卷、浙江卷. 有的试卷由国家统一命题,也有的由各省市自主命题,无论是延续2019年模式的全国卷和地方卷高考试题,还是2020年首次亮相的立足《普通高中数学课程标准(2017年版)》(以下简称《标准》)的全国新高考卷试题,都是重视基础,突出能力,并围绕学生的数学学科核心素养展开全方位考查.
1. 布局合理,考点紧扣标准
2020年高考数学试卷,以圆锥曲线的定义、基本量、标准方程、简单几何性质、位置关系等核心内容为载体,重点考查学生对平面解析几何问题基本解决过程的掌握情况:用代数语言把几何问题转化为代数问题,根据对几何问题(图形)的分析,探索解决问题的思路,运用代数方法得到结论并给出代数结论合理的几何解释解决几何问题. 突出考查学生运用代数方法研究上述曲线之间的基本关系、运用平面解析几何的思想解决一些简单的实际问题的能力,旨在考查学生的直观想象、数学运算、逻辑推理等数学学科核心素养. 试题紧扣《标准》,以基础题、中档题为主,在总共的26道(相同试题算1道)试题中:基础题有10道、中档题有12道,占比约85%;难题4道,其中全国新高考Ⅰ卷第22题、全国Ⅰ卷文科第21题(同理科第20题)、全国Ⅲ卷文科第21题(同理科第20题)为压轴题,布局合理.
2. 分值稳定,多选双填增新彩
高考试题对本专题内容的考查一般是两道客观题和一道主观题,共22分,占全卷分值的14.7%,其中北京卷24分,占全卷分值的16%,而全国Ⅰ卷文科、全国Ⅱ卷文(理)科、天津卷、江苏卷、上海卷中是一道客观题和一道主观题,共17分,占全卷分值的11.3%. 考查形式、题型分布及分值比例与往年基本持平,有很高的稳定性. 在全国新高考Ⅰ卷、全国新高考Ⅱ卷中出现多选题,北京卷中出现两个空的填空题,使试题形式更丰富. 这是新高考题型的示范,为教学指引方向.
3. 文、理略异,趋同铺垫新高考
2020年高考数学试卷中只有全国卷分别命制了文、理科试题. 由于新高考将不再区分文科和理科,因此2020年全国卷的文、理科试题从内容到难度,差异较往年减小,姊妹题数量增加. 在对圆锥曲线与方程的考查中:全国Ⅰ卷文科第21题与理科第20题相同,第11题不同,文科比理科少一道填空题;全国Ⅱ卷文科第9题与全国Ⅱ卷理科第8题相同,全国Ⅱ卷文、理科试卷第19题第(1)小题相同,第(2)小题的已知条件不同,但求解相同,方法相同;全国Ⅲ卷文科第7题、第21题与全国Ⅲ卷理科第5题、第20题相同,文科第14题不同. 由此可以看出,文、理科试题虽有不同之处,但同根同源,体现趋同性,明确导向新高考.
4. 层次分明,数形结合思想贯穿始终
《标准》对圆锥曲线与方程的要求有了解和掌握两个层次:圆锥曲线的实际背景、圆锥曲线在刻画现实世界和解决实际问题中的作用、抛物线与双曲线的定义、几何图形和标准方程,以及它们的简单几何性质、椭圆与抛物线的简单应用为了解;椭圆的定义、标准方程及简单几何性质为掌握. 2020年高考数学试题对圆锥曲线与方程部分的考查层次分明,基础题和中档题均以抛物线和双曲线的定义、简单几何性质、位置关系为考查内容,部分较难的中档题和难题考查椭圆定义、标准方程、几何性质、简单应用,唯独上海卷的解答题考查圆和双曲线的组合,意在打破常规、力求创新,以考查学生的创新应用意识. 同时,在试题中,数形结合思想这条主线贯穿始终,方程与曲线的表述与理解、代数与几何的转化与化归在数形结合中体现得淋漓尽致.
5. 综合性强,凸显思想育素养
圆锥曲线与方程知识是平面几何、平面向量、直线与圆的知识的延续,可以将很多知识、方法(如三角形、直线位置关系、圆、向量、角度、长度、面积、坐标、方程、不等式及函数等)有机结合起来进行考查,体现在知识的交会处命题的基本原则. 例如,全国Ⅰ卷理科第20题、全国Ⅲ卷理科第20题、全国新高考Ⅰ卷第22题、北京卷第20题、江苏卷第18题、浙江卷第21题,上海卷第20题综合性都较强,对学生要求较高. 同时,试题凸显了数形结合、转化与化归、函数与方程等重要思想,为培育学生的数学抽象、直观想象、数学运算、逻辑推理等数学学科核心素养做好了指挥引领作用.
二、命题思路分析
1. 注重对基础知识和基本方法的考查
圆锥曲线的定义、方程、基本量、性质、位置关系是这部分知识的常规考查内容,要求学生既要对椭圆、双曲线、抛物线的共性建构良好的知识网络,又要对每种曲线的自身特点掌握得清楚准确,特别是区分不同曲线的定义、方程、基本量關系、性质、离心率的异同,这些知识容易混淆出错. 借助平面直角坐标系将几何问题坐标化、用代数方法解决几何问题是解析几何的灵魂所在,因此建立方程或方程组、整体求解、设而不求等基本方法,通性、通法也是高频考点. 命题围绕这些设置试题,突出考查学生对基本概念、基础知识、基本方法的掌握.
【评析】考查椭圆、抛物线的基本量[a,b,c,p]之间的关系,相交弦长(通径),椭圆离心率,抛物线定义及方程,椭圆方程. 注重学生对基本量、关系式、离心率、弦长等基础知识的掌握,要求学生弄清知识之间的区别与联系. 该题求解方法简单,整体法求离心率亦常见,第(2)小题利用离心率得[a,c]的关系,化简方程是解答关键,很好地考查了学生的数学运算素养. 除了联立方程求解外,还可以用圆锥曲线的统一定义表示焦半径,简化了运算,提高了解题速度和准确率.
类似试题还有全国Ⅰ卷理科第4题、第15题,全国Ⅱ卷文科第19题,全国Ⅲ文科第14题,全国新高考Ⅰ卷第9题、第13题,全国新高考Ⅱ卷第9题,北京卷第7题、第12题、第20题,天津卷第7题,江苏卷第6题,浙江卷第8题,上海卷第10题.
2. 注重对圆锥曲线与其他知识的综合应用的考查
在知识的交会处命题一直是高考数学命题的一大特点,圆锥曲线不仅是知识交会的高频考点,更是代数与几何的完美结合体,因此将圆锥曲线内容与章节内、章节间、学段间、学科间的知识综合,既体现知识的连贯性,又体现知识的交叉性,既考查学生学习的延续性,也考查学生的综合能力. 2020年高考数学试题中综合考查了圆锥曲线的方程、离心率、渐近线、弦长、交点,以及三角形的面积、周长等,综合考查圆锥曲线与向量、不等式、函数、解三角形的交会,其中不乏对特殊三角形、圆、线段中垂线等初中平面几何知识的考查,以及几何性质与代数表达式之间互相转化的考查,能有效检测学生的思维能力与水平.
【评析】考查椭圆的定义、直线与椭圆相交、向量数量积和点到直线的距离. 第(2)小题中数量积的最值问题考查函数与方程思想,将最值问题转化为函数问题求解的关键点是选取变量,明晰点[P,Q]的主、被动关系,特别是[OP]的纵坐标为0,即点Q的纵坐标对数量积没有影响,从而可以不求点Q的纵坐标,这是降低该题难度的关键点,需要学生有极强的数学运算素养. 第(3)小题考查三角形的面积关系,实质是考查点到直线的距离,需要学生看到问题的本质,即当三角形的一边为定值时,面积取决于这一边上的高,进一步将高的值转化为椭圆上的点到直线的距离,即直线和椭圆的位置关系. 这一系列问题将圆锥曲线与三角形、向量、函数、直线,以及距离流畅地结合起来,在综合考查学生基础知识的同时,考查学生灵活运用转化与化归思想以及数形结合思想解决问题的能力.
【评析】该题是以直线与椭圆相交成图,考查三角形面积的综合问题,试题表述简洁,脉络清晰,是常规题型,但是试题却不易找到解题突破口. 利用垂直关系证得三角形全等,然后用三角形全等求得关键点[P,][Q]的坐标是求解该题的切入点,要求学生认识知识的联系性,将圆锥曲线与初中三角形知识自然地糅合在一起,考查学生对初中所学知识的延伸及初高中知识的融合应用,对学生的跨学段知识综合应用能力要求较高.
此类型的试题还有全国Ⅰ卷文科第11题、全国Ⅱ卷理科第8题、全国Ⅲ卷文科第21题、全国新高考Ⅱ卷第21题、天津卷第18题、上海卷第10题.
3. 注重对数学思维、核心素养的考查
《标准》对高考数学命题提出明确要求:注重对学生数学学科核心素养的考查,处理好数学学科核心素养与知识技能的关系,充分考虑对教学的积极引导作用;要适度增加试题的思维量,应特别关注数学学习过程中思维品质的形成.“一核”“四层”“四翼”的新高考评价体系也明确核心素养、关键能力等考查内容和要求. 2020年高考圆锥曲线与方程的相关试题,以此为依据,注重考查数学思想方法、理性思维和学科核心素养,考查学生通过平面直角坐标系将图形定位、量化,利用代数(方程、方程组)研究平面图形的几何性质,将对数形结合思想、转化与化归思想、函数与方程思想、分类讨论思想的考查不动声色地浸润在试题里,使学生在解题中充分展示分析问题、解决问题的能力,同时注重对数学抽象、逻辑推理、数学运算、直观想象等数学学科核心素养的考查,对数学教学起到很好的引导作用.
【评析】该题为全国新高考Ⅰ卷的压轴题,第(2)小题是圆锥曲线中的定点、定值问题,特别之处是并不知道定点Q的具体位置,需要学生自己寻找,增加了试题的难度. 首先,学生要分析点[M,N]在椭圆上运动的过程中的变量和不变量,找出直线[MN]过定点[E];其次,求得定点[E]的坐标,并能在由点[A,D,E]构成的直角三角形中找到定长. 该题不仅在思维上起点高、难度大,在运算上亦是如此,设点、设线还需分类讨论验证,需要学生具有超强的运算功底. 在解答过程中,充分体现对通性、通法的重视,对技巧的弱化,完整展现学生分析问题、解决问题的能力,对学生数学抽象、直观想象、逻辑推理、数学运算等数学学科核心素养有充分的检验作用. 由于知识和思维跨度较大,数学运算繁杂,对学生综合能力要求较高,真正考查学生用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界的能力.
【评析】该题是以双曲线系、圆系的交点为动点的轨迹问题,打破常规命题背景,有创新意识和应用意识. 考查学生对曲线与方程的定义、双曲线的定义、直线与圆的位置关系、直线与直线的位置关系、向量数量积、函数最值的理解和综合应用. 因为含有参数[b]使得轨迹不为学生所熟悉,所以要求学生对曲线方程的定义有较深的理解. 第(3)小题中的直线[l]与圆始终相切,切点为[M]是关键点,并观察直线[l]与一条渐近线平行,对学生的直观想象、逻辑推理素养要求较高,是一道以能力立意、考查素养、有创新意识的好题.
此类型试题还有全国Ⅰ卷理科第20题、文科第21题,浙江卷第21题.
三、复习建议
通过对2020年高考圆锥曲线与方程试题的分析,可以看到试题对从基础知识、基本方法到运用基本数学思想解决数学问题的思维过程的考查,都体现了注重“四基”、能力立意、突出思维、落实素养的特点. 因此,在高三复习过程中,要通过教学注重数学思想的渗透和学生思维能力的培养,让数学学科核心素养在课堂教学中生根发芽、开花结果.
1. 掌握知识,明辨异同,构建网络
基础知识不仅是高考考查的重点,也是教学重点. 高三复习首当其冲就是要把知识点弄清、理透、掌握牢. 圆锥曲线部分的基本知识点有圆锥曲线的定义、标准方程、几何性质、位置关系,每个知识点所包含的内容很丰富. 例如,圆锥曲线的定义,既有各自的定义,又有统一定义,还有其他方式的定义. 又如,标准方程有焦点在x轴和焦点在y轴等. 这些知识虽然靠记忆,但是学生容易混淆,因此复习时要让学生明晰同一知识点之间的联系与区别、圆锥曲线与圆锥曲线之间的联系与区别,牢固掌握基础知识. 同时,复习不是知识点的简单重复与堆砌,复习是立足章节对所学知识的横向再认识,是站在数学学科角度对所学知识的纵向再认识,要高站位地建构横纵知识结构网络.
2. 注重通法,提升运算,渗透思想
做题是复习课上必不可少的教学活动,《标准》在命题原则中明确提出:注重数学本质、通性和通法、淡化解题技巧. 复习的例题、习题、试题要多选用通性、通法求解的题目,让学生熟练掌握通性、通法. 圆锥曲线部分的内容特点决定了解题需要学生具有超强的运算能力,常用的运算方法、运算技巧、运算素养都需要在做题中提升. 高中的运算不仅仅是简单的数的运算,更多的是式的运算,需要在理解运算对象的基础上,探究运算思路、选择运算方法、求得运算结果,即数学运算素养. 这需要依赖教师在教学中加强对学生运算能力的培养,不能只靠学生自己算,要重视学生在求解运算中的过程设计,如整体解法、方程思想、设而不求、点差法、同理法等. 运算的速度、准确度在很大程度上决定解析几何试题的得分情况,提升运算能力、培养数学运算素养是圆锥曲线部分复习的重点和难点. 教学中要有意识渗透数学思想,方程与函数思想、数形结合思想、转化与化归思想、分类讨论思想等在解题中贯穿始终,能很好地体现理性思维.
3. 提高能力,增强思维,培育素养
能力立意,关注思维,培育核心素养是新高考命题的宗旨,也是高三复习的风向标. 能力、思维、素养的培养都“润物细无声”地存在于教学过程之中,因此教学要从培育核心素养的角度思考复习方案和教学设计,并深入了解学生学习的困难,关注一题多解和多题一解的内容与题目,体现灵活性,放手让学生大胆尝试、引导学生有效反思,有助于强化学生思维,培养学生在面对新的问题情境时运用数学概念对问题进行抽象,用数学符号表达,用逻辑推理分析问题、解决问题的能力,让学生真正做到用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界,以达到提炼学生思维品质,培养学生学科核心素养的课程目标.
4. 克服畏惧,锻炼意志,增强信心
在高考数学试卷中,本专题试题繁冗的运算、大容量的思维使得学生有畏惧心理,很多学生给自己的定位是只做解答题第(1)小题,因此纵使有些试卷的解答题不难,考查结果却差强人意. 例如,全国Ⅱ卷理科第19题,仍有很多学生没有做第(2)小题. 高考不仅是对知识能力的检测,也是对心理素质的检测,复习中不能根据经验或规律,让学生将圆锥曲线与方程问题定性为难题而轻易舍弃,而要以此为契机培养学生面对较繁杂问题时耐心分析、善于转化的能力与勇气,要有意识选择一些基础题和中档题,引导学生在求解的过程中磨炼意志和耐心,克服畏惧心理,以平常心对待,增强“只要有足够的时间,我一定会做出来”的信念和信心.
四、模拟题欣赏
参考文献:
[1]中华人民共和國教育部制定. 普通高中数学课程标准(2017年版)[M]. 北京:人民教育出版社,2018.
[2]吴彤,徐明悦. 2019年高考“圆锥曲线与方程”专题命题分析[J]. 中国数学教育(高中版),2019(9):24-27.
[3]任佩文,张强,霍文明. 2018年高考“圆锥曲线与方程”专题命题分析[J]. 中国数学教育(高中版),2018(7 / 8):122-128.
[4]范美卿,张晓斌. 2016年高考“直线和圆”专题命题分析[J]. 中国数学教育(高中版),2016(9):2-8.