王宏利
摘 要:化归思想是一种解决问题的重要思想,即,将陌生的、不易解答的问题,运用相关方法,转化为熟悉的、易于解答的问题,以达到顺利求解的目的.高中数学教学中,熟练运用化归思想对提高解题能力与数学学习成绩意义重大.本文结合具体例题,探讨化归思想在解答高中数学试题中的具体应用,以供参考.
关键词:高中数学;化归思想;解题;应用
中图分类号:G632 文献标识码:A 文章编号:1008-0333(2020)16-0012-02
高中數学试题类型复杂多变,运用直接转化法、换元法、数形结合法、构造法等进行化归,可降低数学试题难度,大大提高解题正确率,因此,授课中应注重这些化归方法及其应用讲解,提高学生化归思想应用意识,使其掌握这一解答数学问题的重要技巧.
一、直接转化法的应用
直接转化法是一种将数学问题转化为基本公式、基本定理顺利求解数学问题的方法.为使学生能够熟练应用这一化归方法,一方面,授课中为学生深入讲解基本公式,基本定理,使其既要牢固记忆,又要清楚其来源,积累丰富的基础知识.另一方面,结合具体题目,讲解直接转化法的应用,使学生体会应用过程,掌握应用技巧.
参考文献:
[1]杨志远.化归思想在高中数学函数教学中的应用探究[J].数学学习与研究,2019(15):21.
[2]于美芳.化归思想在高中数学解题过程中的应用分析[J].数学学习与研究,2019(13):134.