培养低年级学生发现数学问题能力的几点策略

2016-05-30 13:59尚鹰飞
数学学习与研究 2016年2期
关键词:数学问题数学语言

尚鹰飞

【摘要】 发现和提出问题是培养学生创新能力的基础,发现问题又是提出数学问题的前提,所以在小学低年段,我们就应该有意识地培养学生的问题意识及发现数学问题的能力. 经过实际调查与分析,影响低年级学生发现问题的因素主要有学生对数学语言的理解力、入学前的教育背景及学识起点、课堂教学的设计等.

【关键词】 数学问题;发现数学问题能力;数学语言

数学问题最初表现为数学猜想,它是一个未知真伪的命题. 关于数学问题的定义,相关研究学者给予这样阐述:数学问题,特指用数学语言表述的问题,它由条件、运算和目标等信息组成. 在课堂教学中,学生如何发现数学问题呢?

学生在面对某个情境时,通常会从中找到相关的数学信息,并对其进行观察和分析. 有時需要把情境分解成几个部分,有时需要将已分解的情境联结成一个整体,再进行下一步的思考. 此时,他们会将学过的知识与已分析的数学信息进行进一步的联系. 每个人都是有认知需求的,正是这种需求,会促使学生进行更深层次的思考,此时,疑问就相应产生,即发现数学问题.

一、提高语言理解能力

原苏联数学教育家斯托利亚尔曾说:“数学教学就是数学语言的教学. ”数学语言是表达数学思想的专门语言,具有抽象性、准确性、简约性和形式化等特点. 大量的教学实践凸显出一个共性的问题,学生对数学语言的理解能力将直接影响学生发现数学问题的能力.

数学语言主要包括文字语言、符号语言和图形语言. 其中在小学低年段,我们常见的符号主要有以下几类:一是元素符号,用来表示数或图形,如数字1、2、3;二是关系符号,如:=、<、>;三是运算符号,如:+、-、×、÷等;另外还有如( )类的辅助符号. 文字、图形及符号这三种语言在数学教学中是相辅相成的.

这里我们特殊强调一下图形语言在小学阶段中的重要性,如○、□、△等. 小学生的思维正处于具体向符号运算演示阶段的过渡期,特别是处于小学低年级的学生,他们的思维需要大量具体事物的支撑,其中“数形结合”有利于学生发现数学问题能力的提升.

1. 指导数学阅读. 低年级的教师可以尝试指导学生对教材的图片及数学题目进行阅读.

2. 示范语义转换. 通俗的自然语言是学生所熟悉的,学生感到亲近,且容易被低年级学生理解. 数学教师可以尝试将数学语言译为自然语言,之后再进行将通俗的自然语言译成数学语言,指导学生反复做这样的互译练习.

二、了解学生学习起点

一年级刚刚入学的学生,他们来自不同的家庭、不同层次的幼儿园,在很多方面都存在较大的差异. 我曾做过如下调查:

调查对象:90名学生(新入学)

调查形式:交谈

调查内容:对一组图片进行观察,说一说有什么发现.

图片如下:

生1:我看见有小熊、花朵、松鼠和蝴蝶,还有小鸟.

生2:有6只小熊,7朵花,8棵树,9只鸟,10只蝴蝶.

生3:一个比一个多.

生4:一个比一个多出1个.

生5:我能提出一个问题,蝴蝶比小鸟多多少只?小鸟比蝴蝶少几只?

……

调查结果统计与分析:

从调查数据来看,新一年学生具备一定的发现和提出数学问题的能力,只存在发现的角度不同. 在学生刚入学后,如果新一年级的数学老师都能做一个如上的调查,那么我们掌握的第一手材料将对数学课上引导学生发现和提出数学问题有一定的帮助,同时也能降低课堂教学中提问的盲目性. 另外,我们要特别关注他们的数学思维特点、数学知识与技能的程度、对数学学习持有的态度、数学学习的习惯等,要对这些特殊群体进行深入地了解. 一是有利于教师对学生提问方法的指导;二是有利于教师有针对性地对学生进行数学语言的训练;三是提高课堂教学实效性. 我们可以在入学后运用谈话、观察的方法进行了解和记录.

针对升入二年级的小学生,我们可以通过课前调查、课中观察,课后交流等方式去跟踪他们的学习起点,这样坚持下去,有利于我们一线教师深入了解学情,课前调查时,在教案中合理安排提问内容;课中通过观察,及时调整提问时间及内容,课后通过交流,及时进行自我反思,总结优点与不足. 最终目的就是有利于我们面对不同基础的学生都能做到有的放矢,让不同层次的学生在数学课堂中得到应有的发展.

三、善用激趣教学导入

结合小学低年级学生的年龄特点,我们发现精彩的导入会让学生能以饱满的热情进行课堂学习,乐于提出质疑. 一二年级的学生,他们更喜欢趣味性较强的导入. 学生们生活在现实生活中,而数学来源于生活,我们可以尝试从其熟悉的问题入手,充分利用他们的好奇心,巧设悬念,以疑激学,促使学生在求知欲望中探求知识,引发学生发现数学问题.

例如在教学“年、月、日”时,教师可先出示题:“小军今年12岁,过了12个生日,可小丽也是12岁,她只过了3个生日,你知道这是怎么回事吗?”这时学生情绪高涨,好奇则产生了疑问;还可以进行游戏导入,例如教学“能被2、5整除的数”一节内容时,一位教师创设“知识竞猜”的游戏导入. 游戏规则如下:在自己的双手上分别写上一个双数和一个单数,写好后用左手的数乘3,右手的数乘2,再把两边的积加起来,让学生把结果告诉老师,老师猜测左手上写的是单数还是双数. 当学生报出结果,老师均能准确猜测,此时,学生产生疑问:为什么老师能这么快地进行判断呢?此时教师顺势自然导入新课.

四、布置开放学习任务

在课堂教学当中,我们可以布置富有开放性的学习任务,将学们进行随机分组,围绕一个或几个学习项目进行学习,在小组内分工协作,每个人都会承担一定的责任,同组内的学生在彼此配合中,锻炼了换位思考和双赢思维. 学生们在这种团结协作中,更能激发学生发现数学问题.

教学片段:

活动材料:如上图的一串珠子,蓝珠子,白珠子,绳子,彩笔.

活动任务:四人一组,先分好工,再一起商量出解决办法,可以自由选择活动材料,比一比哪组先得出第25颗珠子的颜色.

活动开始,各小组活动情况如下:

某小组:一人穿珠子;一人數数;两人记录.

某小组:直接拿彩笔继续在书上画珠子;其他人记录.

……

某小组组长举手示意老师.

生1:串珠子太慢了,我们就先观察这串珠子,我们发现它们的排列是有规律的,两个白和三个蓝,反复这样排下去的. 一共有17颗,25 - 17 = 8,后面还有8个珠子,8 - 3 = 5,第25颗珠子就是和第5颗珠子一个颜色,是蓝色的.

一名学生提问:8 - 3表示什么意思?

生1:因为第16、17个珠子都是白色,后三颗珠子一定是蓝色. 把这三个减去,就又是两个白和三个蓝,5个珠子为一组排列.

此时,另一个组的同学要求发言.

生2:我想到一种比他们还要快的方法,这个题可以用我们学的除法解决. 5个可以看成是一组,25 ÷ 5 = 5,正好除尽了,那25颗珠子就和第5颗珠子一样颜色.

生3:那如果不能除尽呢?第32颗是什么颜色?

(师表扬生3问得好)

生4:这就是有余数的除法,32 ÷ 5 = 6(组)……2(颗),那么第32颗就和第2颗是一个颜色了.

生5:那我们只要看余数是几就可以了.

……

本单元的教学目标中指出:让学生初步体会有余数除法与生活的密切联系,能结合生活实际进行运用. 教学片段中的老师安排学生共同进行一次开放性的活动,他并没有直接引出用除法算式来解决这个问题,而是尊重学生的已有认知水平,让学生在活动中自主发现问题,从而突破了这个问题的难点. 正是教师布置了这样富有开放性的活动任务,才促使学生主动去发现问题,才有如“8 - 3表示什么?”“如果不能除尽呢?第32颗是什么颜色?”这样精彩的发问. 学生不再是机械地接受知识,而是能主动去思考和探索发现新问题.

【参考文献】

[1]潘庆年.发现数学问题的主要途径与数学研究的基本方法(上)[J].惠州学院学报,2004年12月,24(6).

[2]刘丽华.小学生数学语言学习的指导[J].教育评论,2007年05期.

[3]陈晓娟.如何在低年级培养学生的数学语言能力[J].才智,2010年第03期.

猜你喜欢
数学问题数学语言
浅析提高数学教师课堂口语艺术和表达能力的方法
问题式教学:我的一方“实验田”
学好数学,从数学语言开始
浅论初中数学教学中的数学问题
浅谈培养高段学生数学语言表达能力的几点策略
培养和提高小学生数学语言能力的探索
如何培养一年级学生的数学语言表达能力
让数学教学更好地走进生活
数学问题解答方法多样化探讨
浅析数学思想在数学教学中的应用