求圆锥曲线中心离心率的取值范围的方法

2015-12-07 02:22肖重明
新课程·中学 2015年10期
关键词:圆锥曲线不等式

肖重明

摘 要:离心率是圆锥曲线的一个特别重要的知识点,求解圆锥曲线离心率的取值范围,是平面解析几何中的重难点,其自然会成为高考考查的重点。就求解圆锥曲线离心率取值范围提出一些方法见解。

关键词:圆锥曲线;离心率;取值范围;不等式

求椭圆和双曲线离心率的取值范围,关键就在于由已知和潜在条件得到一个关于基本量a,b,c,e的一个不等式,再化简为形式,就可以从中求出离心率范围,关键就在于构建不等式。

一、利用点与圆锥曲线的关系构建不等式

可以充分考虑点和圆锥曲线的关系,利用向量、坐标法或其他方法进行不等式的构建解析。如例题1:有椭圆 +y2=1,n>0,在这个椭圆上有两个关于直线x+y=1的对称点A,B。求椭圆的离心率取值范围。此题可用点差法求出线段AB的中点G坐标(用n表示),G点定在椭圆内,根据椭圆内部点坐标遵循不等式 +y2<1,求出n的取值范围,因为e2=1- ,再把n的取值范围带入,再结合椭圆离心率大于0、小于1的特性综合求出e的取值范围。

二、利用直线和圆锥曲线的关系条件

部分求解圆锥曲线离心率的题目中,是以直线与圆锥曲线位置设置问题条件的,那就利用这个关系,再结合代数知识构建不等式求解离心率范围。例如命题者普遍会将双曲线同直线交点个数问题作为限制条件,让求解离心率。因为存在交点,就可以整合直线方程和双曲线方程构造新的一元二次方程,转化成该方程根个数的问题,据此分情况列出不等式求离心率。

三、结合其他知识块构建不等式

在求解离心率的过程中不能只局限与圆锥曲线的知识,还要结合其他知识模块,找到解题思路,通常运用较多的知识模块有二元一次方程、均值不等式、三角形三边关系等,其中均值不等式多结合余弦定理使用。

四、利用圆锥曲线自身性质构建不等式

充分理解圆锥曲线的性质对其离心率范围的求解大有好处,比如双曲线的焦半径取值范围、椭圆上的点与两焦点连线间夹角最大时,这个点在椭圆的短端点上。例如题目:椭圆(a>b>0)上存在点P使得其与两个焦点连线夹角∠F1PF2为120°,求离心率e的取值范围。根据椭圆上的点与两焦点连线间夹角最大时,这个点在椭圆的短端点上的性质,只要保证∠OBF2≥60°即可,即sin∠OBF2=≥ ,e的范围也就可以求出来了。

参考文献:

张利平.揭秘高考圆锥曲线离心率的几种常规求法[J].数学学习与研究,2015(09).

编辑 谢尾合

猜你喜欢
圆锥曲线不等式
圆锥曲线中定点问题的常见方法
高中数学不等式解题技巧总结
简析高中数学不等式易错题型及解题技巧
高中数学不等式易错题型及解题技巧
用概率思想研究等式与不等式问题
一道IMO试题的完善性推广
浅谈构造法在不等式证明中的应用
探究发散思维教学法在高中数学课堂教学中的应用
解析高考数学圆锥曲线的复习策略
高中圆锥曲线综合题求解之初探