谢锋
中图分类号:G633.6 文献标识码:A 文章编号:1002-7661(2014)18-0087-02
高中数学是一门逻辑性比较强的学科,在对问题的分析与解决中,学生的思维能力就体现出来了。情景教学具有挑战性与趣味性,能使学生在分析问题时勇于探索,大胆发散思维。因此,情景教学在数学中的开展对学生思维能力的培养帮助很大。此外,情景教学强调学生的主体作用,是一种通过学生自主构思、自主分析并解决问题的教学模式。因此,情景教学在数学中的开展也突出了学生的主体地位。
一、提出问题情境,激发学习兴趣
在高中教学的过程中,不仅数学教师是问题的提出者,同样的,学生在遇到具体的数学问题情境时,也可以发现并提出一些有价值的问题,并与老师、同学一起创造性地解决问题。同时,在问题数据的收集与整理过程中,数学教师还可以对学生进行指导、讲解、激发,使之获得问题的答案与更多的知识,从而增强其发现问题的欲望和好奇感,使学生不断地提出新问题,并解决问题。在高中的教学过程中,不仅教学内容要与课本内容保持相对一致,高中教师还应大量运用情境模式教学,将学生们带入一个活学活用的情境中,让他们加深对数学理念的认知、数学公式的记忆,不仅要学会如何思考数学问题,还要在问题中学会如何寻找答案,从而不断增强对知识的理解能力,激发起学习的积极性与想要学习的迫切性。
例如,在讲“等比数列的前n项和公式”教学时,可设计如下银行复利存款问题作为背景:2l世纪国家提出人人都享有保险,有很多同学的父母都为自己的孩子买了不同的保险,如分红险、教育险、理财险等,以某同学购买的从1岁起每年交1万,连交20年,到60岁以后每年领取5万元的退休金,同时前20年每年返还1000元的险种为例,要求同学们将买保险和存银行利率为4%且活到80岁作比较,究竟是保险公司赚钱呢,还是同学获利多?待学生稍作思考后,数学教师可点明两者之间可能会产生好几百万的差距,学生为之大惊,由此产生了认识上的冲突,因此迫切想了解所学内容,这就为新课讲授创造了心理条件。
二、诱发问题思维,改进思维方式
学生是思维的主体,教学中的一切活动都是为学生的学习服务的,而学生的思维活动是在一定的情境中展开的。探讨解决数学问题的过程是思维训练的过程,也是心理内化的过程,创设适合的问题情境,能激发学生的自主活动,突破思维障碍,促使其思维从不成熟走向成熟。
例如,在讲解“直线和平面所成角”时,复习完直线和平面的三种位置关系后,教师可以举例教室内吊在半空的电风扇、斜靠在墙边的拖把,都可以看作是直线的一部分,提问:这些直线与地平面有何位置关系?学生回答:相交。教师再提出问题:从位置关系来看,同为和平面相交的直线,它们和地面的相对位置有没有区别?学生回答有区别,教师即可引出答案:既然有区别,说明仅用“线面相交”来描述此时的线面关系显然是不够的,在生产实际与数学问题中,有时还需要进一步考虑它们的相对位置关系,这就为我们提出了怎样来刻划线面相交时这种相对位置的问题。这样一问一答之间,教师与学生构成了一个交织的构架,教师可以将优秀的数学思维活动充分展示给学生,使学生沉浸在对新知识的渴望和探求中,从而触发了积极的思维活动。
三、督促学生动手操作,启发新思路、新结论
对高中数学的学习来说,特定的操作情境是必不可少的,特别是在几何教学过程中,折纸、度量、拼图等动手操作,常常可以启发学生的新思路,推设出新结论。因此,教师应该为学生创设生动有趣的教学情境,让学生感知新知,由此产生问题,进而引起探究的好奇心,使之积极参与思考,并在参与中实现自身的发展和进步。
例如,在讲“空无何体的三视图”一课,其活动主线为:观察者从不同位置观察同一个几何体→画出平面图形→分析三视图的特征→“长对正,宽平齐,高相等”结论→由三视图识别出所表示的立体模型。教学的重点是能画出一些简单空间几何体的三视图,难点是由三视图识别出所表示的立体模型。在这些教学环节中,可以让学生跟随教师一起探索研究、动手画图,去了解其间的“长对正”“宽平齐”与“高相等”的相互关系,为学生理解和掌握三视图作铺垫,这也极大地强化了他们的空间想象能力和动手操作能力。
四、结合实际,加深对问题的理解
我们要从学习教材与学生已有的知识和生活经验相联系的,现实情景出发,紧密联系学生的生活实际,以将学生的生活系到数学概念和方法上去,同时还能得到新知,反过来增强解决实际问题的能力。
例如,在讲解“等差数列求和”时,可以给出姚明在NBA赛场上连续8年的场均得分,成等差数列增长。然后由教师提问:经统计,姚明在NBA赛场上的场均得分如下6、8、10……试归纳第9年,他场均得分是多少分?一讲到学生关心的“火箭队”和“姚明”,自然引起了他们的兴趣,增加了课堂活力。
总之,创设数学问题情境教学时,教师要结合学生的身心特点、知识水平、教学内容、教学目标等特点,合理创设出具有较好教育功能的情境,让情景创设服从教学内容,服务于教学目标,服务于教学重点。
(责任编辑 曾 卉)endprint