从大学数学的课堂教学谈逻辑思维能力的培养

2013-04-29 13:48王宜举王磊
教育教学论坛 2013年6期
关键词:逻辑思维能力概念教学

王宜举 王磊

摘要:大学数学包括《高等数学》、《线性代数》、《概率论与数理统计》三门课程,它们是高校理工科学生必修的专业课。正如钱学森所说,数学是其他学科的基础和工具,同时在培养学生逻辑思维能力方面,有其他学科无法比拟的优势。当然,大学数学也是学生所学课程中最难的课程之一。如何利用课堂教学化解大学数学的难度,让学生易于接受并掌握,同时大力提高学生的逻辑思维能力具有重要的现实意义。本文根据作者若干年来的教学经验,给出了一些利用课堂教学培养学生逻辑思维能力的具体方法,供大家借鉴,特别是对刚走向岗位的青年教师,有一定的指导作用。

关键词:逻辑思维能力;概念教学;命题教学

中图分类号:G642.3 文献标志码:A 文章编号:1674-9324(2013)06-0079-02

一、理论分析

1.基本概念。逻辑思维是指理性认识的过程,使人们运用概念判断推理等思维形式,合乎逻辑地反映现实。这里的“合乎逻辑”的含义有以下几点:①事物发展有其客观规律性,即人们常说的“客观的逻辑”。②人们在认识过程中为了正确反映现实,必须遵循运用概念、判断进行推理的规律,即逻辑规律,包括辩证逻辑的规律(对立统一规律、质量互变规律、否定之否定规律)和形式逻辑的规律(同一律、矛盾律、排中律和充足理由律)。③正确使用逻辑思维方法。逻辑思维方法包括:比较、分析、综合、概括、抽象、演绎、归纳等,它们是根据事实材料,正确形成概念、做出判断和进行推理的方法。逻辑思维能力是指人们在认识过程中正确理解逻辑思维规律、熟练运用逻辑思维方法分析问题、解决问题的能力。由上述概念可以看出利用课堂教学培养逻辑思维能力,首先必须展示理性认识的过程。

2.理性认识过程。①问题。马克思主义认识论指出,人类认识世界的目的就在于改造世界。这说明人类的认识具有明确的指向性,这种指向性在认识活动中具体表现为“问题”,它是激发人们探索自然与社会的动力,作为理性认识的完备形式,任何一门理论体系都是为着解决相应问题而产生的,因此“问题”在理性认识中处于首要地位。②概念。人们在实践中对客观事物的感性认识大量积累的基础上,抓住了事物的本质、全体和内部联系,用一定的物质外壳语词把它标识出来,这就产生了概念。概念是反映对象本质属性的思维形式,是思维的“细胞”,也是感性认识与理性认识的分水岭,它标志着人们认识的尺度。作为一门理论体系,任何教学课程的研究对象都体现为基本概念。例如:微积分学的研究对象是函数概念,线性代数的研究对象是线性空间与线性变换等。③判断、推理。判断是展开了的概念,是对某一事物内部联系作出肯定与否定论断的思维形式。在数学课程中,判断大都体现为基本概念具有的性质,因此理解掌握判断的中心词甚为重要。推理是从已知判断推出新的判断的思维形式,它能反映事物发展的必然趋势。在数学课程中,推理反映概念具有的规律,大都表现为“定理”、“命题”等。

3.指导原则。由上述分析,在具体的实践教学中,应遵循以下原则:①课堂内容的讲授要联系实际。一切的理论知识均来源于实际,并又应用于实际,只有把知识与实际紧密结合,才能突显所学知识的作用与价值,才能呈现给学生一个完整的逻辑思维过程。②突出问题的核心纽带作用。从某种意义上讲,理性认识的过程就是提出问题、分析问题、解决问题的过程,可以看出其中的“问题”统领着理性认识的发展,起着逻辑思维的导向作用。③具有清晰的逻辑思维。认识的形成与发展过程此时应遵循辩证逻辑,而讲授具体的判断与推理应遵循严格的形式逻辑的规律。④正确运用各种逻辑思维方法。这样更能清晰展现概念的形成、求解思路的由来,教师通过不断课堂示范,学生自然就会在无意中模仿、尝试,从而达到有意识培养逻辑思维能力。

二、教学实践

课堂教学所涉及环节、内容、方法诸多,在此不再泛谈,仅就提高学生的逻辑思维能力谈及两点:概念教学与命题教学。

1.概念教学。概念是反映认识对象的本质属性的思维形式,是思维的“细胞”,人们认识的新领域、新方法、新工艺等通常都是用概念标识。在课堂教学中具体展现概念的形成过程,不但让学生易于接受、理解、掌握概念,而且更能有益于学生逻辑思维能力的培养。概念教学的几个环节:①背景问题。在已有认识的基础上所进行的有目的的实践创新活动,一定触及到新领域、新方法、新应用、新问题,后者就是用概念表示,而前者就是产生概念的背景,这种情形针对于一些学科的基本概念大都以问题的形式出现,例如,《概率论与数理统计》中的随机现象为基本概念,而概率密度函数就为一般概念。②概念的抽象过程。任何事物都是质和量的统一,在具体的实践活动中,把“质”略去,把关注的“量”或“量的关系”提升出来,此过程就是抽象过程,就是产生数学概念的过程。例如,物理中物体在力作用下所作功,我们把“力”、“功”略去,只把量的关系提升出来,就形成“矢量的内积”概念。在课堂中要讲清这一抽象过程必须做到:①描述具体的实践活动;②关注怎样的“量”;③质与量是如何相统一的;④“量”与“量的关系”的提升。③给概念下定义。概念的表述必须简明、严谨,这要求讲授者对概念有深刻的理解与把握,这是学生理解概念与逻辑清晰的前提。现在数学概念大都以公理化形式表述,即“若A满足条件B,则称A为……”④概念的表示。为了更简明地运用概念,一般都给出概念的符号表示,在给概念下定义后,通常有“记作……”这就是概念的符号表示。为了更好地理解概念,抽象的概念大都给出其直观表示,即教材中概念的几何意义,如:导数、微分、定积分、偏导数、梯度的几何意义等。⑤概念的应用。为了更加全面的把握概念以及更加深刻的理解概念,关于概念的应用练习是不可缺少的,通常表现为教师讲解一些例题,学生课堂练习一些相关题目。

2.命题教学。对现实世界的任何空间形式和关系有所肯定或否定的思维形式称为数学判断;用数学符号或语句表达的数学判断称为数学命题。由于数学命题有真有假,这里所讨论的情形皆为数学真命题。在实际课堂教学中,讲解某一概念后,为了方便概念的适用,大都涉及两类简单命题:性质命题与关系命题。性质命题就是判定某一概念具有或不具有某种属性的命题,性质命题由主项、谓项、量项和联项四部分组成,其中主项表示性质命题中的概念,谓项表示概念在哪些方面具有的性质。性质命题的证明相对简单,只需运用概念的定义就可得到。但在教学中需突出强调性质命题的主项与谓项。关系命题是判断数学概念之间的关系的命题,关于关系命题的教法同性质命题,这里不再详谈,我们重点讨论两类命题教学:一是定理,二是例题、习题。

(1)定理。用逻辑推理的方法证明是正确的命题叫做定理,定理由条件和结论两部分组成。在一理论体系中,定理往往是回答某一研究对象或概念在某些方面的问题而产生的,因此定理教学应该明确:定理回答的“问题”;研究对象或概念;问题的性质,进而探求产生问题的实际背景与需求,由此可以很自然的理解定理的条件,即定理的题设或已知。定理的证明过程就是从定理地已知条件出发,运用已学过的定义、公理、引理、性质,最后推出定理的结论。在课堂教学中重点在于对定理的分析以及证明思路的获取,为此,首先根据定理回答的问题及条件推测定理的结论,这里就要运用从特殊到一般的抽象概括,从个体到整体的归纳,剥竹笋式的分析化归等逻辑思维方法,其次确定定理证明的任务及入手处,特别地,入手处是对任务的定性所得到的,需要重点剖析与讲解,最后证明过程的整理需要准确使用概念、符号等数学语言,严格遵守形式逻辑规则。

(2)例题、习题。例题在整个理论体系中上衔理论下接应用,目的在于利用范例的形式告诉大家运用理论解决实际问题的大致方法,或者在解决实际问题中应注意的关节点,或者介绍理论的诸多应用情形等。教材中例题的选取具有典型性,因此,在课堂教学中高度注意例题的讲解,它是理论与应用之间的桥梁,它能缩小理论的抽象性与应用的具体性之间的距离,为化解大学数学的难度有着重要作用。习题属于应用范畴,就是运用所学理论解决实际问题,它有利于加深理论的理解,这一环节对提高学生应用逻辑思维解决问题的能力有着极其重要意义。习题的讲解大致包含以下部分:一是对该习题的问题定性,即提出一个怎样的问题;二是把习题中的已知、求解数学化,即习题中的实际情形用概念、符号表示,由此更加明细问题;三是把问题与性质、定理相对应,由此找出一般的解法;四是具体考察习题的特殊性,把一般解法与特殊性相结合,从中找出具体解法。

教材内容呈现了人类优秀理论成果,为了保证理论的简洁、系统、科学,教材内容的编写安排一般采用了公理化形式,并严格遵循形式逻辑规律。在课堂教学中,如果教师照本宣科,就会使学生的思维僵化,因此,要想培养学生活生生的思维,大力提高学生的逻辑思维能力,在课堂教学中教师不但展现思维的成果,更要展现思维的过程,本文在如何展现思维过程方面做了初步的探讨。

参考文献:

[1]李大潜.漫谈大学数学教学的目标与方法[J].中国大学教学,2009,(1)

[2]赵韩强,曾兴雯,赵树凯.研究教学型大学教学模式探讨[J].中国电子教育,2008,(1).

作者简介:王宜举,教授,博士生导师,山东省日照市,曲阜师范大学管理学院。

猜你喜欢
逻辑思维能力概念教学
小学数学教学中对学生逻辑思维能力的培养探究
浅析小学数学教学中如何培养学生的逻辑思维能力
问题式探究教学模式在高中数学概念教学中的运用
刍议概念教学在小学数学教学中的应用价值
对初中数学课程概念教学的求真与探微
漫谈小学数学的概念教学
小学数学教学中对学生逻辑思维能力的培养研究
小学数学教学中对学生逻辑思维能力的培养
小学数学教学如何培养学生逻辑思维能力