“大概念”下的数形结合思想在小学低年级数学教学中的渗透

2024-05-18 08:50陆琪
求知导刊 2024年5期
关键词:大概念数形结合低年级

摘 要:小学低年级学生存在形象思维能力较弱、空间想象能力尚未发育成熟、对抽象的数学概念理解较为吃力等问题。基于此,通过课堂实践、数据分析等方法,在“大概念”背景下探究如何在小学数学课堂教学中渗透数形结合思想。基于“大概念”制订教学目标,优化小学低年级数学课堂教学模式,并运用有效的评价机制,让学生将抽象的数量关系与直观生动的空间图形建立联系,降低学生对数学知识、公式、算理的理解难度,提升学生的思维能力及学习效率,培养学生解决实际问题的能力。

关键词:低年级;数形结合;大概念;小学数学

作者简介:陆琪(1993—),女,江苏省苏州市实验小学校教育集团。

一、研究背景

美国著名教育心理学专家布鲁纳曾经说过:“在学习特定主题或者技能之前,没能在一个更大的基础性框架背景下认清这些主题或技能所处的情境,这样的教学是不经济的。”[1]这里的“基础性框架”指的就是学科知识中的“大概念”。在小学低年级数学教材中,数的认识与计算内容占比较大,但由于内容简单而被教师当作单一的事实性知识进行教学。教师在教学中只要求学生能正确读数、写数、进行简单的四则运算,而忽视了大概念下知识点、原理、计算方法之间的普遍联系,这样的教学不能整合相关内容,导致学生对于知识的理解浮于表面,缺乏对本质的探索。教师在教学中应利用大概念统领数学单元教学设计,探究大概念与单元教学之间的关系。

在小学数学教学过程中,要切实提高学生的综合素质,这是现代数学教育的关键内容[2]。数学思想在现代教学过程中所发挥的作用越来越显著,其中,数形结合思想在“数”与“形”之间构建起桥梁,将抽象的数量关系与直观生动的空间图形建立联系,以形助数,以数解形,有助于学生深入理解数学知识、算理、方法,提高数学素养。数形结合中的“数”表示数字、算术、代数等抽象的概念,“形”则包含图形、几何、客观物体等,“结合”就是将两者紧密关联,通过“形”来认识“数”,通过“数”来概括“形”。“数”属于抽象思维,“形”属于形象思维,数形结合是通过情境和图形将数量关系与客观形象相联系,从而加快对数学知识的掌握,并提升解决数学问题的能力。

二、小学低年级学生的学习特点

皮亚杰的认知发展理论指出:小学低年级学生正处在由前运算阶段向具体运算阶段过渡的关键时期。这一时期的学生,形象思维能力仍占主导地位,逻辑思维能力与抽象概括能力仍处于初步发展阶段,空间想象能力发展还不够成熟,对于单一枯燥的事实性知识,很难凭空想象、记忆与理解,并且在理解数量关系上也存在一定的困难。小学低年级学生在课堂上注意力集中时间较短,易受外在事物的影响,稳定性不强。此外,他们对生活充满好奇心,对于直观的“形”充满兴趣。基于小学低年级学生的认知发展规律,教师在数学概念的教学中,需要创设与日常生活息息相关的情境,并提供相关道具,如小棒、计数器、小圆片、点子图等,借助动手操作活动,让学生直观地学习抽象概念,以“形”助“数”,從而理清抽象概念之间隐藏的数量关系,把握抽象概念表征下的本质内涵。

三、数形结合思想在小学低年级数学教学中的渗透

教师对数形结合思想的研究大多停留在将数形结合思想作为数学教学的脚手架,研究其对培养学生数学素养的作用,很少对其进行深入剖析。小学数学教师应该深入挖掘教材概念,基于大概念制订教学目标、优化课堂教学模式、运用有效的评价

机制。

(一)基于大概念制订教学目标

数形结合思想在小学数学中有着广泛的运用,它贯穿于小学数学教学始终。例如,“10以内数的认识”一课是一年级学生进入小学阶段的第一节课,需要学生初步感知10以内的数,这也为后面学习“11—20各数的认识”“10以内的加减运算”“百以内数的认识”“万以内数的认识”等知识点打下了坚实的基础,是建立数感的重要一课。因此,笔者设立了如下教学目标:1.通过数数活动掌握数数的方法;2.通过摆小棒、拨计数器等动手操作活动,经历数产生的过程,理解数的意义,建立数感;3.能正确、工整地书写1—10各数。

这节课是学生接触数形结合思想的伊始,教师在教学中让学生观察身边的事物,数出身边事物的数量。学生发现:一支铅笔可以用“1”来表示;一块橡皮可以用“1”来表示;一把尺子可以用“1”来表示……学生举出大量实例,在真实情境中发展数感,建立抽象概念“1”。这里的“铅笔”“橡皮”“尺子”都是具体的“形”,看得到也摸得着,但都和抽象的数“1”有着一定的联系。再接着数,一支铅笔可以用“1”来表示,两支铅笔可以用“2”来表示……同样是铅笔,一会儿用“1”来表示,一会儿却又用“2”来表示,这是为什么呢?教师要引导学生理解这里的“1”和“2”表示的是具体事物的数量。教师可以让学生列举其他例子,感知数可以表示不同物体的个数,从而体会从数量到数的抽象过程。

认识了1—10各数后,教师请一名学生走上讲台,并提问:“讲台上有几名学生?”学生回答:“有一名学生,可以用‘1来表示。”教师再请一名学生走上讲台:“现在有几名学生?”学生回答:“有两名学生,可以用‘2来表示。”通过直观的情景,学生看到在前一个数的基础上添上1就是几的过程,体会了数产生的过程。

在教学1—10各数的书写时,学生观察发现:“10”的书写与其他数字都不同,1—9各数都是用一个数字表示的,而10是用两个数字表示的。其实,这与我们的十进制有着密切的联系。笔者在教学中从古人计数的方法入手,如:古人用一个小石头表示数量“1”,用一个大石头表示数量“10”,从而引发学生思考这样表示有什么优点。

(二)基于大概念优化课堂教学模式

由于小学低年级学生的抽象思维能力和逻辑思维能力较弱,而这一阶段的数学知识内容已有一定的综合性和抽象性,学生学习难度较大。因此,在课堂教学中,教师需要根据学生的思维发展水平和实际教学内容优化课堂教学模式,转变学生的学习方法,发展学生的创造性思维。

1.利用“数形结合”直观理解数学概念

概念就是对事物本质属性与共同特质的概括。而数学概念往往是抽象的、不具体的。对小学低年级学生来说,学习和掌握抽象的概念是一个巨大的挑战。而数形结合思想将抽象的概念以直观的形式呈现出来,有助于学生加深对概念本质的理解。例如,在“20以内数的认识”一课中,笔者创设了帮助养鸡场数鸡蛋的情境,学生通过摆小圆片数数发现,随着小圆片数量逐渐增多,数数的困难也逐渐提高,那有什么好办法吗?有学生说可以把10个鸡蛋归在一起,十个十个地数。这时教师引出鸡蛋盒(可以将10个鸡蛋装在一个盒子里),请学生动手装一装,装好后进行对比:左边是一个一个的鸡蛋,右边是一盒鸡蛋加几个鸡蛋,哪个更清楚?学生直观地感受到了满十个归在一起的优点。

此外,学生对于“14的4在()位上,表示()个一,1在()位上,表示()个()”这样的题目经常出现混淆,对此,笔者引导学生通过摆小棒、拨计数器等形式演绎14形成的过程。学生发现:个位相当于小石头,“4个一”中的“4个”,其实就是在求小石头的数量,相当于计数器个位上珠子的数量,而后面的“一”表示的是数量“1”,是一个计数单位。而“1个十”中的“1个”,就相当于大石头的数量,在计数器上表示的是十位上珠子的数量,“十”就表示数量“10”。在反复拨珠子表示数的练习中,学生对20以内的数与形(计数器)进行了结合,直观地理解了20以内数的组成。通过“教师报数、学生在计数器上拨数”等游戏活动,学生逐渐掌握了十进制数的概念。此外,在日常的班级奖励机制中,笔者设立了“10张小种子奖券可以换1张小花奖券”的奖励规则,让学生在日常生活中建立“满十进一”的十进制概念,为后面学习“百以内数的认识”打下基础。

2.利用“数形结合”理清数量关系

在教学“>、<或=的认识”一课时,抽象地比较数与数之间的大小关系对小学低年级学生来说比较困难,“数量关系”的概念对于学生来说太过抽象,学生虽然在前面的学习中能正确用数表示物体的数量,但并不知道什么是数量关系。因此,本节课的难点在于让学生理解两个量之间的关系。笔者在教学中利用两种方法构建数与形之间的桥梁,帮助学生建立脚手架,直观经历比较的过程,理清数量关系。方法一:将学生熟悉的尺子(数轴)作为脚手架,让学生在数的过程中,感知数从小到大、从大到小的顺序。比如:3添上1就是4,所以4比3大,3比4小。数轴能直观地将文字以图片的形式呈现给学生,是教学“数的认识”“数的运算”经常会用到的一种方法。方法二:笔者创设动物拔河比赛的情境,引导学生用小圆片表示小动物的数量,通过摆一摆并一一对应连线的方式认识到数与数之间的大小关系,如图1所示。

(三)运用有效的评价机制

桑代克曾经说过,学习中应遵循的最重要的学习定律是效果律,即教师要对学习结果进行反馈。教师对学生学习状况的及时反馈能为学生指明学习的方向;如果不作反馈,学生就不能很好地对自己的水平和问题有正确的认知。学生对自身的正确了解将成为其学习的推动力量,反之,如果学生在学习过程中没有得到反馈,就会逐渐失去学习的目标与热情。因此,教师应给予学生及时、有效的评价。此外,考虑到小学低年级学生的认知发展水平与心理特征,教师在日常教学中应多用正向的鼓励性语言进行评价。

“大概念”下的数形结合思想的渗透是为了培养学生数形结合的意识与能力。小学低年级学生缺乏数学思维,解题方法单一,缺乏经验,对于一些新颖的题型会出现无从下手的情况。在课堂教学中,当学生初次产生数形结合的思想,有利用数形结合思想去解决简单的实际问题的意识时,教师应给予及时有效的评价,帮助学生培养数学思维,掌握以形助数、以数解形的思想方法。

结语

数学是研究现实世界的数量关系与空间形式的科学,而数形结合思想就是通过数和形之间的对应关系和相互转化来解决实际问题。要想在教学中渗透数形结合思想,教师应当注重学生直观构建图形能力的培养,培养学生用画图、摆图形、拨计数器、画数轴等方法去解决数学问题的意识和能力。另外,教师要关注的不仅是学生目前的知识掌握水平和解决问题的能力,还要考虑学生在未来的学习中需要用到的能力,并提前帮助学生培养这些能力。教师应该基于大概念设计教学活动的各个环节,全面渗透数形结合思想。

总之,针对小学低年级学生的认知发展水平仍处于形象思维能力占主导地位,逻辑思维能力與抽象概括能力较弱的情况,再结合他们对生活充满好奇、对“形”充满兴趣的心理特征,教师应整合教材内容,引导学生有意识地运用数形结合的思想方法来解决现实生活中的数学问题。教师在教学中要有意识地基于大概念制订教学目标,优化课堂教学模式,运用有效的评价机制,在教学中渗透数形结合思想,使学生对数学知识、算理、方法有更深入的理解,提高数学素养。

[参考文献]

[1]李刚.围绕学科大概念的教学转化模式研究:从方法到实践[J].上海教育科研,2021(1):10-15.

[2]卢芳.小学数学教学中数形结合思想的融入与渗透方式探究[J].考试周刊,2020(80):71-72.

猜你喜欢
大概念数形结合低年级
基于大概念的中高年级现代诗歌教学策略的研究
以大概念的理念引领高中物理教学
数形结合在解题中的应用
浅析数形结合方法在高中数学教学中的应用
用联系发展的观点看解析几何
妙用数形结合思想优化中职数学解题思维探讨
浅谈如何培养低年级学生的说话能力
一年级同音字教学例谈
低年级学生课前预习能力的培养
浅谈低年级随文练笔的有效训练