“双减”背景下基于学科大概念提升课堂教学质量

2023-12-30 12:37赵让成
黑龙江教育·小学 2023年12期
关键词:创新教法双减

赵让成

摘要:依托学科大概念优化小学数学课堂,能够达到高效节时的目的,为“双减”政策的落地助力。一是基于学科大概念进行教材梳理,为教学资源的优质筛选奠定基础。二是通过学情诊断,为提升课堂教学质量提供精准依据。三是基于学科大概念优化教学路径、方法,运用转化思想,提升课堂效益,提升学生的学习力与迁移力。本文以人教版小学数学五年级上册“小数除法”为例进行探析。

关键词:小数除法;学科大概念;梳理教材;诊断学情;创新教法

“双减”不是“减去”学生应有的学习负担,而是杜绝费时低效,倡导高效节时。基于学科大概念提升课堂教学质量,正是落实上述“拒绝”与“倡导”的措施之一。所谓“学科大概念”,是指能够将学科的关键内容及关键思想进行有机融合,建构成具有较强系统性学科框架的重要概念。这是上位的、核心的、具有统摄与整合意义的概念。基于学科大概念盘活教学资源、优化课堂教学,能够帮助学生“探究知识本质、建构知识关联、感悟思想方法”[1]。就小学数学教学而言,基于学科大概念统摄教学,能够避免碎片化学习,是对数学知识的整体把握与结构性合拢,是指向数学思想与方法的过程。就小数除法的教學而言,不能单一地从小数这一个知识点出发,而应把整数、小数、分数统摄在一起进行理解与设计。比如,“商不变的性质”适合于任何数(而不仅仅是小数),整数除法与小数除法的算理具有“一致性”等等,数的细分适用于多种运算,完全可以“用一根线串起珠子”。从这样的大概念出发,学生正视运算一致性,容易运用转化思想,做到前后勾连,整体理解,达到提质增效的学习目的。

一、梳理教材寻找支点

细心观察部分数学课堂,可以发现教师碎片化解读教材、单线条推进教学进程的现象仍然存在。表面看,教学环节够齐全;深处分析,没有紧扣学科上位概念,知识点之间缺乏有效关联与整体衔接,以致于前后出现“断层”现象。“双减”背景下,这种“零散割裂”的教学应该予以摒弃,基于学科大概念而梳理教材寻找支点成为必然。所谓“支点”,就是勾连知识点的核心概念,就是结构化指向———就小数除法的教学而言,能够贯通“整数、小数、分数”三大块,做到真正意义上的举一反三。

人教版小学五年级上册“小数除法”单元教材安排了五个例题,看似比较分散,类型较多,但从学科大概念出发,则不难发现其中的“联系点与一致性”。通过重新梳理,基于学科大概念,我们把五个例题整合为两个序列:“除数是整数的小数除法”和“除数是小数的小数除法”。

这样的梳理与整合并非随意而为,而是关联性的结构重建,而且做到了由此及彼,螺旋上升———前者为后者奠定基础,后者通过变换形式印证前者,正所谓:“厘清小数除法的算理,是贯通整数除法和小数除法的支点”[2]。这样的盘活,就“双减”而言,有利于学生学习负担的减轻;从知识内在的机理而言,有利于知识树的形成,有利于实现运算的一致性,达到事半功倍的效果。

二、分析学情找准切入点

基于学科大概念开发课堂优质资源必须基于学生的真实学情,教师必须了解学生的学习起点与前知识结构,如此才能为精准教学与减负课堂的打造奠定基础。我们用算式“16÷5”为例进行前测(见表1)。

从表1中可以看出,课堂的费时低效源于碎片化学习———未能在前后知识的联结处进行有效关联,未能以上位或核心概念去整合算理,未能从迁移的角度去内化知识与方法。鉴于此,教师应基于学科大概念,重构教学框架,倡导整体教育观,通过转化思想优化教学过程,实现真正意义上的减负增效。

三、教学实践过程

(一)注重迁移,感受认知冲突

“16÷5”的结果不是整数,肯定有余数。如何表示这个带有余数的结果?我们引领学生从口答的整数除法入手,为小数除法算理的引出与总结做铺垫,进行知识脉络的续接,为基于学科大概念的课堂教学奠定基础。

组织学生口算16÷5与9÷4,其结论为“3……1”与“2……1”。教师追问:答案中的“1”如何理解?能否继续细分?“1”前面的长串省略号能否有更好的表达方式?个别学生的答案中有小数,带有省略号的表示形式是否可以用小数表示?

仅仅是一个口算环节,却将整数除法与小数除法联结到一起。可见,教师要有强烈的资源整合意识,要善于将新旧知识整合,善于引领学生通过溯源性思考,运用“连线串珠”的方法,明晰新旧知识的联系点与迁移点,实现学习效益的最大化。

(二)多元表征,体会算理本质

余数中的“1”与“0”始终是小数除法中的关键因子———相当一部分学生不知道小数点后面究竟是包括“0”在内的几位数。悉心分析,原来是学生的算理不清,缺乏整体把握与结构性理解。因此,我们组织学生通过学科大概念的理解,认真观察竖式特征,进行多元表征,从中体会算理本质。

大屏幕呈现用竖式计算的商的过程,学生观察之后,教师设问:余数由“1”变为了“10”,其意义是什么?商为“2”,意义又是什么呢?请看以下思考过程(如图1):

这样的表征实际上是不断细分的过程,是把1看成了10个0.1的细分过程。以此类推,10个0.1除以5的结果是2个0.1。明白了这一点,哪里点上小数点以及把“2”写在哪里,答案呼之欲出。

(三)迁移推理,感受运算本质

小数除法意味着计数单位更小。教师的责任就在于引领学生在不断细分的过程中迁移推理,左右贯通,发现运算本质,发现知识之间的“起承转合”,达到“一通百通”的目的。而这,正是成功把握学科大概念之后学习的理想境界。

针对9÷4的竖式出现的“10”与“20”,必要的迁移推理不可或缺:如果0.1不够分,可以继续细分,只需要在小数点后面添加“0”即可,0.01,0.001……这与整除除法的规律是一致的。

可见,“数的意义”与“数的运算”之间有关联,数的表示与运算方法有关联,整数除法与小数除法在算理上有关联……教师的责任就在于引领学生自己发现这样的关联,自己学会迁移推理,自己依托学科大概念成功解决问题。

(四)对比梳理,凸显算理一致

在不断的迁移推理中,学生不难发现:“被除数和除数同时除以相同的数(0除外)后商不变”,这个性质是可以通用到所有数的运算中。说做就做,相当一部分学生在重温转化思想之后,勇敢地进行新旧知识的算理贯通。以下是两次对比梳理。

1.第一次对比。教师分小组让学生计算并观察3.2÷0.5和32÷5的商,总结两者之间的共性,发現依托学科大概念进行计算的意义。

2.第二次对比。利用展板在大屏幕上展示学生完成的几组算式(包括错题),组织学生观察、讨论后进行汇报,发现运算规律,总结经验教训(如图2)。

这样的对比梳理是有意义的:由9÷0.4到90÷4,学生由此及彼,通过熟稔运用转化思想,变孤立为融通,形成上挂下联的局面。这种局面让学生学得轻松而高效,达到了减负增效的目的。

基于学科大概念,在变中找不变,在整体勾连中“多走了几个来回”,“促使学生形成科学严谨的思维习惯,培养推理意识。”[3]这种“习惯与意识”能够让学生受用终生,能够为“双减”政策在小学数学学习中的有效落地提供持久的动能。数学教师应该基于学科大概念进行系统化建构,为减负增效提供支撑。

参考文献:

[1] 王玉彬,姚颖.探索运算本质构建运算联系[J].小学数学教育,2022(5).

[2] 侯燕妍.以理驱法,体会运算一致性[J].教学月刊小学版(数学),2023(1-2).

[3] 冯玉新.注重“一致”整体施教贯通“理法”促进学习[J].福建教育,2023(1).

课题项目:甘肃省教育科学“十四五”规划2023年度重点课题“‘双减背景下依托‘学科大概念开发课堂教学优质资源及应用研究”(GS[2023]GHBZ133)

编辑/赵卓然

猜你喜欢
创新教法双减
“双减”重构义务教育格局
“双减”出台,校外培训面临巨震
省教育厅基础教育处一行到莒县开展“双减”工作专项调研活动
持续推动“双减”,强化学校育人主阵地作用
苹果园实现化肥农药“双减”的路径选择
初中思品实践活动课落实德育功能策略探索
小学中年级学生观察作文创新教法
确立学生作文主体,引导学生快乐作文
刍议新课标高中数学有效教学法
改革创新教学教法,打造高效化学课堂