魏千惠 韩鸿宇
摘要:在高速移动环境中,传输时延和频率偏移是影响跳频信号的2大因素.因此,研究在传输时延和频率偏移同时存在下的时频二维跳频序列具有重大实用价值.时频二维汉明相关函数满足的理论界是判定跳频序列性能优劣的重要准则.因此,对时频二维汉明相关函数进行了研究,并给出了关于时频二维汉明相关函数、序列个数、频隙个数、序列长度和频移范围的新理论界,证明了刘元慧的理论界以及Peng-Fan界为新理论界的特殊情况.
关键词:跳频序列; 时频二维; 汉明相关; 理论界; 多普勒频移
中图分类号:TN911.2 文献标志码:A 文章编号:1001-8395(2023)05-0706-05
跳频通信是目前广泛应用的主要扩频通信方式.迄今为止,跳频多址接入(frequency-hopping multiple-access, FHMA)在无线通信领域有着广泛的应用,如智能电网通信[1]、物联网[2]、战场通信[3].跳频多址扩频系统需要发射机相互之间的干扰尽量维持低的水平.在相同时间下出现同一频率的发射信号,则会造成彼此干扰[4].跳频信号彼此干扰的力度与汉明相关的大小密不可分.因此需要研究跳频序列的汉明相關特性来更好地评判跳频通信系统的性能[5-10].一些参数构成的理论界约束着跳频序列的汉明相关值.
现有的跳频序列理论界只考虑了时延的影响.例如,Lempel等[11]研究了当M=1,2的特殊情况时的理论界.Peng等[12-13]研究了时延影响下的Peng-Fan界.在雷达等高速移动环境下,存在多普勒频移现象,同时考虑时延、频移可以更好地实现通信服务.
时频二维汉明相关的概念由于提出不久,且二维序列设计难度较大,因此现有研究成果不多,主要包括:边强等[14]给出了时频二维非周期低碰撞区跳频序列的构造,许成谦等[15]给出了时频二维低碰撞区跳频序列的构造和时频二维无碰撞区跳频序列的构造,刘元慧等[16]给出了2类跳频序列集时频二维汉明相关性的分析.分析和构造跳频序列集需要一个评判标准,这个评判标准就是理论界[17-22].目前,关于时频二维跳频序列理论界的研究成果不多,理论界体系并不完善,主要包括许成谦等[21]给出的二维相关跳频偶唯一性和理论界,李鑫等[22]给出的时频二维部分汉明相关理论界.
本文推导了由跳频序列的时频二维汉明相关值、频隙个数、序列长度、序列个数、频移范围构成的跳频序列的时频二维汉明相关理论界.此理论界对分析和构造最优时频二维跳频序列集起着重要作用.另外,还证明了现有的刘元慧的理论界以及Peng-Fan界是本文推导的理论界的特例.
1跳频序列的时频二维汉明相关函数的概念
2跳频序列的时频二维汉明相关函数理论界
3结束语
跳频序列向来都是扩频通信范畴的基础理论研究课题.此课题主要涵盖理论界、序列设计.本文给出了跳频序列的时频二维汉明相关函数的新理论界.该理论界由多个参数组成,对分析和构造最优时频二维跳频序列集具有重要的指导意义.并且还证明了刘元慧的理论界以及Peng-Fan界是所推导的新理论界的特殊情况.今后将基于本文推导的新理论界构造具有灵活参数的最优时频二维跳频序列集.
参考文献
[1] ZENG Q, LI H, PENG D. Frequency-hopping based communication network with multi-level QoSs in smart grid:code design and performance analysis[J]. IEEE Trans Smart Grid,2012,3(4):1841-1852.
[2] BAI Z, LI B, YANG M, et al. FH-SCMA:frequency-hopping based sparse code multiple access for next generation internet of things[C]//Wireless Communications & Networking Conference. San Francisco:IEEE,2017.
[3] NING B, GUAN L, HUANG H. A novel frequency-hopping sequence for covert communication[J]. IEEE Access,2017,5:20157-20163.
[4] 彭代渊. 新型扩频序列及其理论界研究[D]. 成都:西南交通大学,2005.
[5] 彭代渊. 跳频序列的理论界[J]. 四川师范大学学报(自然科学版),2019,42(5):569-578.
[6] 唐小虎. 具有低碰撞区的跳频序列的理论界[J]. 四川师范大学学报(自然科学版),2021,44(4):427-438.
[7] HAN H, ZHANG S. New classes of strictly optimal low hit zone frequency hopping sequence sets[J]. Advances in Mathematics of Communications,2019,14(4):579-589.
[8] REN W, FU F W, ZHOU Z. New sets of frequency-hopping sequences with optimal Hamming correlation[J]. Designs Codes and Cryptography,2014,72(2):423-434.
[9] LIU X, ZHOU L, LI S. A new method to construct strictly optimal frequency hopping sequences with new parameters[J]. IEEE Trans Information Theory,2018,65(3):1828-1844.
[10] XU S, CAO X, XU G, et al. Two classes of optimal frequency-hopping sequences with new parameters[J]. Applicable Algebra in Engineering, Communication and Computing,2019,30:1-16.
[11] LEMPEL A, GREENBERGER H. Families of sequences with optimal Hamming-correlation properties[J]. IEEE Trans Information Theory,1974,20(1):90-94.
[12] PENG D Y, FAN P Z. Lower bounds on the Hamming auto- and cross correlations of frequency-hopping sequences[J]. IEEE Trans Information Theory,2004,50(9):2149-2154.
[13] PENG D Y, FAN P Z, LEE M H. Lower bounds on the periodic Hamming correlations of frequency hopping sequences with low hit zone[J]. Science in China:Information Sciences,2006,F49:208-218.
[14] 许成谦,边强. 二维非周期低碰撞区跳频序列构造方法[J]. 系统工程与电子技术,2019,41(7):1646-1651.
[15] 许成谦,曹琦. 时频二维低/无碰撞区跳频序列集构造[J]. 系统工程与电子技术,2018,40(4):898-903.
[16] 刘元慧,许成谦. 两类跳频序列集时频二维汉明相关性的分析[J]. 系统工程与电子技术,2017,39(9):2132-2136.
[17] HAN H Y, PENG D, LIU X. New lower bounds on the a periodic Hamming correlations of frequency hopping sequences with low hit zone[J]. Designs, Codes and Cryptography,2015,75(1):157-174.
[18] 牛宪华,曾柏森. 低碰撞区跳频序列平均部分汉明相关理论界研究[J]. 西华大学学报(自然科学版),2014,33(3):1-5.
[19] ZENG Q, ZHOU Z, LIU X, et al. Strong no-hit-zone sequences for improved quasi-orthogonal FHMA systems:sequence design and performance analysis[J]. IEEE Trans Commun,2019,67(8):5336-5345.
[20] LI P, FAN C, YANG Y, et al. New bounds on wide-gap frequency-hopping sequences[J]. IEEE Communications Letters,2019,23(6):1050-1053.
[21] 许成谦,赵雅洁. 二维相关跳频序列偶唯一性和理论界[J]. 北京邮电大学学报,2018,41(1):31-36.
[22] 许成謙,李鑫. 跳频序列集的时频二维部分汉明相关理论界[J]. 燕山大学学报,2019,43(4):351-356.
Time-frequency Two-dimensional Hamming-correlated Theoretical
Bound of Frequency Hopping SequenceWEI Qianhui,HAN Hongyu(School of Computer Science, Sichuan Normal University, Chengdu 610101, Sichuan)
Abstract:In high-speed mobile environment, transmission delay and frequency offset are two major factors affecting frequency hopping signal. Therefore, it is of great practical value to study the time-frequency two-dimensional frequency hopping sequence in the presence of transmission delay and frequency offset. The theoretical bound satisfied by the time-frequency two-dimensional Hamming correlation function is an important criterion to judge the performance of frequency hopping sequences. Therefore, the time-frequency two-dimensional Hamming correlation function is studied, and a new theoretical bound on the time-frequency two-dimensional Hamming correlation function, the number of sequences, the number of frequency gaps, sequence length and frequency shift range are given. It is proved that Liu Yuanhuis theoretical bound and Peng-Fan bound are special cases of new theoretical bound.
Keywords:hopping sequence; time-frequency two-dimensional; Hamming correlation; theoretical bound; Doppler shift
(编辑 周俊)