基于模糊化邻域系统的模糊粗糙集模型

2023-06-21 03:59候婷冉虹马欢秦克云
关键词:模糊集粗糙集

候婷 冉虹 马欢 秦克云

摘要:基于邻域系统的粗糙集模型是Pawlak粗糙集模型的重要推广形式.讨论基于模糊化邻域系统的模糊粗糙集模型,给出模型中模糊粗糙近似算子的构造方法并讨论算子的基本性质.另外,当模糊化邻域系统串行、自反、对称、一元和传递时刻画了相关近似算子的代数结构.

关键词:模糊化邻域系统; 上近似算子; 下近似算子; 粗糙集; 模糊集

中图分类号:TP182 文献标志码:A 章编号:1001-8395(2023)05-0652-08

粗糙集理论是由波兰数学家Pawlak[1]在1982年提出的,它是一种处理不确定性问题的重要数学工具.经过40多年的发展,粗糙集理论已经在机器学习[2]、决策分析[3]、模式识别[4]与数据挖掘[5]等领域被广泛应用.

经典粗糙集模型是基于一个等价关系来建立近似空间.在现实生活中,基于等价关系的粗糙集模型在其它领域的应用具有一定的局限性.因此,众多学者对经典的粗糙集模型进行扩展.用一般二元关系代替等价关系,Yao[6]提出了基于一般二元关系的广义粗糙集模型.将等价关系弱化为相似关系[7]、容差关系[8]、优势关系[9]等,等价关系确定的划分就扩展成了论域的覆盖.于是,经典粗糙集模型拓展到了覆盖广义粗糙集模型[10-11].

Lin[12]借助拓扑学中内点和闭包的概念,提出了基于邻域系统的粗糙集模型.基于一般二元关系的粗糙集模型、基于覆盖的粗糙集模型以及模糊粗糙集模型都是基于邻域系统的粗糙集模型的特例[13].因此,研究基于邻域系统的粗糙集模型具有重要的理论意义.另外,邻域系统在群决策问题研究中具有直接的应用.Zhu等[14]建立了基于模糊邻域系统的决策评价模型,将相应的评价问题表示为模糊邻域信息系统,并讨论了系统的属性约简问题.Zhang等[15]系统研究了基于邻域系统的粗糙集模型中近似算子的相关性质.而模糊化邻域系统是邻域系统的一种推广形式,它把邻域从经典集扩展到模糊集.Li等[16]研究了经典集在模糊化邻域系统下近似集的基本性质,以及当模糊化邻域系统自反、串行和对称等時讨论了相关近似算子的性质.

文献[16]中定义的近似算子的被近似对象是经典集,近似的结果是模糊集.本文是在文献[16]的基础上把近似算子的被近似对象从经典集推广到模糊集,给出了模糊粗糙近似算子的定义,导出了基于模糊化邻域系统的模糊粗糙集模型.本文主要研究模糊集在模糊化邻域系统下模糊粗糙近似集的基本性质.此外,当模糊化邻域系统自反、对称和传递等时,文中进一步刻画了模糊粗糙近似算子的代数结构.

1 预备知识

1.1 粗糙集

1.2 模糊集

1.3 基于邻域系统的粗糙集

2 基于模糊化邻域系统的模糊粗糙集模型

下面是在Li等[16]提出的基于模糊化邻域系统的粗糙集模型的基础上,给出了模糊粗糙近似算子的定义,导出基于模糊化邻域系统的模糊粗糙集模型.本节主要研究模糊粗糙近似算子的基本性质,以及讨论模糊化邻域系统在串行、自反、对称、一元和传递时模糊粗糙近似算子的代数结构.

参考文献

[1] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences,1982,11(5):341-356.

[2] AVISO K B, JANAIRO J I B, PROMENTILLA M A B, et al. Prediction of CO2 storage site integrity with rough set-based machine learning[J]. Clean Technologies and Environmental Policy,2019,21(8):1655-1664.

[3] DAI J H, LIU Z B, HU H, et al. Rough set model for cognitive expectation embedded interval-valued decision systems[J]. Chinese Journal of Electronics,2018,27(4):675-679.

[4] LIANG J Y, WANG F, DANG C Y, et al. An efficient rough feature selection algorithm with a multi-granulation view[J]. International Journal of Approximate Reasoning,2012,53(6):912-926.

[5] ZHANG J B, LI T R, CHEN H M. Composite rough sets for dynamic data mining[J]. Information Sciences,2014,257:81-100.

[6] YAO Y Y. Constructive and algebraic methods of the theory of rough sets[J]. Information Sciences,1998,109(1/2/3/4):21-47.

[7] STEFANOWSKI J, TSOUKIAS A. Incomplete information tables and rough classification[J]. Computational Intelligence,2001,17(3):545-566.

[8] LEUNG Y. Maximal consistent block technique for rule acquisition in incomplete information systems[J]. Information Sciences,2003,153:85-106.

[9] GRECO S, MATARAZZO B, SLOWINSKI R. Rough sets theory for multicriteria decision analysis[J]. European Journal of Operational Research,2001,129(1):1-47.

[10] ZHU W. Topological approaches to covering rough sets[J]. Information Sciences,2007,177(6):1499-1508.

[11] ZHU W, WANG F Y. On three types of covering-based rough sets[J]. IEEE Transactions on Knowledge and Data Engineering,2007,19(8):1131-1143.

[12] LIN T Y. Granular Computing:Practices,Theories,and Future Directions[M]. New York:Springer,2012:1404-1420.

[13]  SYAU Y R, LIN E B, LIAU C J. Neighborhood systems:rough set approximations and definability[J]. Fundamenta Informaticae,2018,159(4):429-450.

[14]  ZHU P, XIE H Y, WEN Q Y. A unified view of consistent functions[J]. Soft Computing,2017,21(9):2189-2199.

[15] ZHANG Y L, LI C Q, LIN M L, et al. Relationships between generalized rough sets based on covering and reflexive neighborhood system[J]. Information Sciences,2015,319:56-67.

[16] LI L Q, JIN Q, YAO B X, et al. A rough set model based on fuzzifying neighborhood systems[J]. Soft Computing,2020,24(8):6085-6099.

[17] YAO Y Y. Two views of the theory of rough sets in finite universes[J]. International Journal of Approximate Reasoning,1996,15(4):291-317.

[18] ZADEH L A. Fuzzy sets[J]. Information and Control,1965,8(3):338-353.

[19] SYAU Y R, LIN E B. Neighborhood systems and covering approximation spaces[J]. Knowledge-Based Systems,2014,66:61-67.

[20] ZHAO F F, LI L Q. Axiomatization on generalized neighborhood system-based rough sets[J]. Soft Computing,2018,22(18):6099-6110.

[21] FANG J M, YUE Y L. K. Fans theorem in fuzzifying topology[J]. Information Sciences,2004,162(3/4):139-146.

[22] FANG J M, CHEN P W. One-to-one correspondence between fuzzifying topologies and fuzzy preorders[J]. Fuzzy Sets and Systems,2007,158(16):1814-1822.

[23] HERRLICH H, ZHANG D X. Categorical properties of probabilistic convergence spaces[J]. Applied Categorical Structures,1998,6(4):495-513.

[24] YING M S. A new approach for fuzzy topology (I)[J]. Fuzzy Sets and Systems,1991,39(3):303-321.

Fuzzy Rough Set Model Based on Fuzzifying Neighborhood Systems

HOU Ting RAN Hong MA Huan QIN Keyun

(School of Mathematics, Southwest Jiaotong University, Chengdu 611756, Sichuan)

Abstract:The generalized rough set in neighborhood system is an important extension of the Pawlaks rough set model. This paper discusses the fuzzy rough set model based on the fuzzifying neighborhood system. The construction method of the fuzzy rough approximation operators in the model is presented and the basic properties of the operators are investigated. In addition, when the fuzzifying neighborhood system is serial, reflexive, symmetric, unary and transitive, the algebraic structures of the related approximation operators are examined.

Keywords:fuzzifying neighborhood system; upper approximation operator; low approximation operator; rough set; fuzzy set

2020 MSC:47H99

(編辑 余毅)

猜你喜欢
模糊集粗糙集
基于Pawlak粗糙集模型的集合运算关系
基于上下截集的粗糙模糊集的运算性质
复图片模糊集及其在信号处理中的应用
基于二进制链表的粗糙集属性约简
区间直觉模糊集相似度构造
优势直觉模糊粗糙集决策方法及其应用
多粒化粗糙集性质的几个充分条件
双论域粗糙集在故障诊断中的应用
基于粗糙模糊集的输电杆塔塔材实际强度精确计算
两个域上的覆盖变精度粗糙集模型