Bloch型空间上的加权微分复合算子

2018-02-09 08:19侯晓阳
关键词:充分性微分常数

侯晓阳,许 毅,陈 伟

(1.温州商学院基础部,浙江温州 325035;2.温州大学数理与电子信息工程学院,浙江温州 325035)

1 有关定理及推论

若n=0,则就是加权复合算子,如果再有u(z)≡1,则为复合算子Cφ.

Madigan K和Matheson A在文[2]中研究了Bloch空间和小Bloch空间上复合算子Cφ的有界性和紧性问题;LouZ[3]研究了不同权Bloch型空间之间的复合算子Cφ,对于H∞空间上的加权复合算子uCφ的有关结论,可见文[4-8]及相应文献;Stevic[9-10]和刘永民等[11]等研究了混合范数空间和Bloch空间,以及Hardy空间上的加权微分复合算子的有界性和紧性问题.文献[12]研究了单位圆盘上从BMOA空间到Bloch型空间的加权微分复合算子的有界性和紧性,得到:

当α=1时,即为上述定理A,定理B;当n=1,时,则算子,可得文[13]主要结论:

定理的证明主要采用待定系数法确定检验函数,本文出现的字母C表示与变量z,w等无关的常数,为方便起见,不同的地方可以表示不同的常数.

2 引 理

引理1 对任意正整数n,f∈Bα,存在常数C(只与权值α有关),使得

引理1可见文[14]定理5的证明过程,下面的紧性判断引理见文[15]定理3.11,取X=Bα,Y=Bβ,类似证明可得.

3 定理的证明

定理1的证明:充分性.若条件(1)(2)成立,结合引理1,可得:

综合(8)和(9)可知(1)式成立.

定理2的证明:充分性.对Bα中的任意有界序列,有fk在D的紧子集上一致收敛于0,由引理2,只需证明.以下不妨设

由条件(3)和(4),∀ε>0,当时,有:

结合(10)和(11)式,以及引理1,可得:

当|z|≤r<1时,有:

即fk(z)在D的紧子集上一致收敛于0.故由引理2,结合式(14)式得到:

[1] Zhu X L. Products of differentiation, composition and multiplication from Bergman type spaces to Bers type spaces[J]. Integr Transf Spec F, 2007, 18(3/4):223-231.

[2] Madigan K, Matheson A. Compact composition operators on the Bloch space [J]. Trans Amer Math Soc, 1995, 347:2679-2687.

[3] Lou Z. Composition operators on Bloch type spaces [J]. Analysis, 2003, 1(1):81-95.

[4] Shi J H, Luo L. Composition operators on the Bloch space of several complex variables [J]. Acta Math Sin, 2000, 16:85-98.

[5] Ohno S, Zhao R H. Weighted composition operators on the Bloch space [J]. Bull Austral Math Soc, 2001, 63:177-185.

[6] Ohno S. Weighted composition operators betweenH∞and the Bloch space [J]. Taiwanese J Math , 2006, 5(3):555-563.

[7] Colonna F. Weighted composition operators betweenH∞and BMOA [J]. Bull Korean Math Soc, 2013, 50(1):185-200.

[8] 刘超,侯晓阳.Besov空间到Zygmund空间上的加权复合算子[J].纯粹数学与应用数学,2016,32(2):197-205.

[9] Stevic S. Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces [J]. App Math Comput, 2009, 211(1):222-233.

[10] Stevic S. Weighted differentiation composition operators fromH∞and Bloch spaces to nth weighted-type spaces on the unit disk [J]. App Math Comput, 2010, 216(2):3634-3641.

[11] 刘永民,于燕燕.从Hardy空间到Zygmund-型空间的加权微分复合算子[J].数学年刊A辑,2014,35(4):399-412.

[12] Liu J, Lou Z, Sharama A. Weighted differentiation composition operators to Bloch-type spaces [J]. Abstr Appl Anal,2013(1):233-255.

[13] Li S, Stevic S. Composition followed by differentiation between Bloch-type spaces [J]. J Comput Anal Appl, 2007,9(2):195-206.

[14] Zhu K. Bloch type spaces of analytic functions [J]. Rock Mou J Math, 1993, 23(3):1143-1177.

[15] Cowen C, Maccluer B. Composition operators on spaces of analytic functions [M]. Florida:CRC Press, 1995:128-129.

猜你喜欢
充分性微分常数
关于Landau常数和Euler-Mascheroni常数的渐近展开式以及Stirling级数的系数
Ap(φ)权,拟微分算子及其交换子
拟微分算子在Hp(ω)上的有界性
多复变整函数与其关于全导数的微分多项式
Liénard方程存在周期正解的充分必要条件
解析簇上非孤立奇点的C0-Rv-V(f)-充分性
上下解反向的脉冲微分包含解的存在性
维持性血液透析患者透析充分性相关因素分析
再谈高三化学讲评课的实践与探索
万有引力常数的测量