转底炉直接还原铜渣回收铁、锌技术

2017-04-11 01:00:34曹志成孙体昌吴道洪刘占华北京科技大学金属矿山高效开采与安全教育部重点实验室北京00083北京神雾环境能源科技集团股份有限公司北京000
材料与冶金学报 2017年1期
关键词:铜渣金属化铁粉

曹志成,孙体昌,吴道洪,薛 逊,刘占华(. 北京科技大学金属矿山高效开采与安全教育部重点实验室,北京00083;. 北京神雾环境能源科技集团股份有限公司,北京000)

转底炉直接还原铜渣回收铁、锌技术

曹志成1,2,孙体昌1,吴道洪2,薛 逊2,刘占华2
(1. 北京科技大学金属矿山高效开采与安全教育部重点实验室,北京100083;2. 北京神雾环境能源科技集团股份有限公司,北京102200)

采用转底炉直接还原工艺,将铜渣含碳球团在高温条件下直接还原得到金属化球团和高品位氧化锌粉尘,再通过熔分或磨矿磁选方式将铁回收,得到的铁产品可作为冶炼含铜钢的原料.转底炉中试结果表明:采用“转底炉直接还原—燃气熔分”流程处理铜渣,可获得TFe品位94%以上、铁回收率93%以上的熔分铁水;采用“转底炉直接还原—磨矿磁选”流程处理铜渣,可获得TFe品位90%以上、铁回收率85%以上的金属铁粉;采用两种流程处理铜渣,均可获得锌品位60.02%的ZnO粉尘.结果表明,经过转底炉直接还原,铜渣中的铁橄榄石Fe2SiO4和磁铁矿Fe3O4相转变为含有金属铁Fe、二氧化硅SiO2和少量辉石相Ca(Fe,Mg)Si2O6的金属化球团,具备通过磨选或熔分进行进一步富集的条件.

铜渣;转底炉;直接还原;磁选;燃气熔分

从2006年至2015年,我国精炼铜产量持续快速增长.2015年我国铜产量达796万t,其中97%以上由火法冶炼生产,每生产1t铜平均要产生2~3 t铜渣[1],据此估计我国每年产生铜渣量约1 500万t.据统计,我国铜渣堆存量累计已达到1.4亿t以上,这些尾渣中不仅含有大量的铁元素,且富含Zn、 Pb、 Cu和Co等多种有价金属元素,是宝贵的二次资源[2-4].由于铜渣中的铁含量较高,其平均品位远高于我国铁矿石可采品位[5],因此铁元素的回收利用价值较高.然而铜渣中的铁主要以铁硅酸盐(铁橄榄石, 2FeO·SiO2)的形式存在[6],渣中SiO2含量较高使其无法直接用于传统的高炉流程中,又因矿物嵌合紧密,难以采用传统的选矿方式分离出脉石生产铁精矿[7-8].近年来随着火法工艺的发展,采用高温还原等工艺[9-11]处理铜渣的技术也逐渐成熟起来,其中直接还原工艺成为研究的热点.本文采用“转底炉直接还原—磨矿磁选”和“转底炉直接还原—燃气熔分”技术对铜渣进行了大量的基础试验和中试研究.结果表明,该技术可有效实现铜渣中铁、锌元素的综合回收利用,减少堆存造成的土地占用及环保问题,是实现铜渣资源高效综合利用的有效途径.

1 试验介绍

1.1 原料性质

试验选用国内某铜冶炼渣经浮选回收铜的尾矿(以下简称“铜渣”)为原料,化学成分见表1.

表1 铜渣化学成分分析(质量分数)

为探明铜渣中主要矿物组成,对试验铜渣进行了XRD衍射分析,详见图1.可见其中铁矿物主要为铁橄榄石Fe2SiO4和磁铁矿Fe3O4相,采用直接选矿的方法仅能回收其中的磁铁矿,无法高效回收铁橄榄石中的铁元素.

试验选用无烟煤固定碳含量质量分数为72.36%,灰熔点为 1 258 ℃;选用工业石灰石为磨矿磁选流程的助熔剂,其氧化钙含量为51%;选用工业石灰石块作为助熔剂,其氧化钙含量为53%.

图1 铜渣的XRD衍射图谱Fig.1 XRD patterns of the copper slag

1.2 试验流程及原理

试验的流程:将铜渣经原料处理后,与还原煤、添加剂和黏结剂等按一定比例配合混匀,经过圆盘造球机造块,制成含碳球团,含碳球团烘干后布入转底炉,在炉内 1 200 ~ 1 300 ℃ 的还原区还原为金属化球团,球团中ZnO则被还原成金属Zn,挥发进入烟气中,经再氧化生成ZnO,随烟气富集到布袋收尘系统中,产出的金属化球团,可采用热装—熔分工艺实现渣铁分离从而得到熔分铁水,也可采用直接水淬冷却—磨矿磁选工艺得到金属铁粉.转底炉处理铜渣的工艺流程如图2所示.

图2 转底炉处理铜渣的工艺流程Fig.2 Process flow chart for processing copper slag by rotary hearth furnace

试验原理:铜渣中的硅酸铁与还原剂中的碳反应方程见式(1),可见硅酸铁还原为金属铁为强吸热反应.

Fe2SiO4(s)+2C(s)→2Fe(s)+SiO2(s)+2CO(g)

(1)

为了促进硅酸铁反应,添加了石灰石作为助熔剂,其反应方程见式(2)

Fe2SiO4(s) + 2CaO(s) + 2C(s) → CaSiO4(s)+2Fe(s) + 2CO

(2)

2 试验讨论与分析

试验顺序为首先进行基础试验,在获得最佳工艺条件后再进行转底炉中试验证.分别采用“转底炉直接还原-燃气熔分”流程和“转底炉直接还原-磨矿磁选”流程对上述铜渣进行了转底炉中试,每种流程的铜渣处理量为120 t.转底炉处理量为2~3 t/h;燃气熔分炉处理量为 1 t/h;金属化球团磨矿磁选厂处理量为 2 t/h.

2.1 直接还原—熔分流程

基础试验获得最佳的工艺条件为:铜渣:还原煤=100∶25(质量比),还原温度 1260 ℃,还原时间 40 min. 此时球团金属化率为85.96 %;将球团热装进行熔分试验,熔分前配入金属化球团质量18%的生石灰块,熔分温度 1 530 ℃,熔分时间 50 min,此时获得熔分铁的TFe品位95.82 %,回收率为97.16 %.

按照此工艺条件进行转底炉中试,将转底炉产出的约700 ℃的金属化球团热装入钢包,直接投入燃气熔分炉进行熔分,可获得铁品位96.73%、铁回收率96.81%的铁水,中试熔分铁水成分分析见表2.

表2 熔分铁水化学成分(质量分数)

熔分铁水中w[S]为0.29%,经脱硫处理后作为炼钢原料进行销售,另外铁水中含0.35%的铜,可作为冶炼含铜耐候钢(铜质量分数0.25%~0.80%)的原料.

2.2 直接还原—磨选流程

基础试验获得最佳的工艺条件为:铜渣:还原煤:石灰石=100∶25∶18(质量比),还原温度1250 ℃,还原时间35min,此时球团金属化率为90.12 %.采用两段磨矿磁选流程,一段磨矿细度-0.074 mm占75.35 %,磁场强度 143.31 kA/m;二段磨矿细度-0.074 mm占60.13 %,磁场强度95.54 kA/m,得到金属铁粉TFe品位91.83 %,铁回收率88.05 %.

按照此工艺条件进行转底炉中试,转底炉产出的金属化球团直接落入水淬池冷却,由捞渣机捞出送往磨矿磁选厂,可获得铁品位91.78%、铁回收率87.81%的直接还原铁粉,中试铁粉成分分析见表3.

对比熔分流程得到的铁水成分,磨选流程得到的金属铁粉中杂质硫含量较低,主要原因是85%以上的硫被固结在尾矿中,将铁粉干燥、成型后可作为冶炼含铜钢原料.

2.3 中试氧化锌粉尘

铜渣中的Pb、Zn等元素,在转底炉直接还原过程中挥发进入烟气,通过布袋除尘系统收集,得到氧化锌粉尘成分分析见表4.

表3 中试金属铁粉成分分析(质量分数)

表4 中试氧化锌粉尘成分分析(质量分数)

转底炉中试验证结果表明,通过上述两种流程处理铜渣,可获得锌品位60.02%的氧化锌粉尘,整个流程Pb、Zn的脱除率分别为98.89%和97.52%.

3 机理分析

为探明铜渣还原及后续处理流程得到产品中铁的矿相存在形式及变化规律,对铜渣原矿、熔分流程金属化球团、磨选流程金属化球团和磨选流程获得金属铁粉进行了XRD衍射分析,详见图3.

图3 铜渣、金属化球团以及磁选铁粉的图谱Fig.3 XRD patterns of metallized pellets and iron powders

由图3可见,铜渣中的铁橄榄石Fe2SiO4和磁铁矿Fe3O4相经过转底炉直接还原后,在球团中以金属铁Fe、二氧化硅SiO2和少量辉石相Ca(Fe,Mg)Si2O6相存在,为后续熔分流程或磨矿磁选流程提铁创造了有利条件.对比磨选流程与熔分流程,前者所得金属化球团中的辉石要多于后者,主要原因是磨选流程在配料中加入了石灰石,石灰石分解产生的氧化钙与铁橄榄石反应所致.

4 结论及展望

(1)铜渣中铁主要以2FeO·SiO2的形式存在,采用常规工艺难以将其中的含铁资源进行回收,本文采用转底炉直接还原技术,对铜渣进行了燃气熔分和磨矿磁选两种流程的中试规模研究,在提取铁元素的同时,也实现了锌元素的高效回收.

(2)转底炉中试结果表明:采用“转底炉直接还原—燃气熔分”流程,可获得TFe品位96.73%的熔分铁水,铁回收率96.81%;采用“转底炉直接还原—磨矿磁选”流程,可获得TFe品位91.78%的金属铁粉,铁回收率87.81%;两种流程均可获得锌品位60.02%的氧化锌粉尘.

(3)通过XRD衍射分析,经过转底炉直接还原,铜渣中的铁橄榄石Fe2SiO4和磁铁矿Fe3O4相转变为含有金属铁Fe、二氧化硅SiO2和少量辉石相Ca(Fe,Mg)Si2O6的金属化球团,具备通过磨选或熔分实现进一步富集的条件.

(4)目前,金川集团与神雾集团成立合资公司,在金川已建成年处理80万t铜渣转底炉示范生产线.该项目采用转底炉直接还原—磨矿磁选—铁粉压块工艺流程,项目的投产将为有色行业冶金弃渣的大规模综合利用起到重大的示范推动作用.

[1]姜平国, 吴朋飞, 胡晓军, 等. 铜渣综合利用研究现状及其新技术的提出[J]. 中国矿业, 2016, 25(2): 76-79. (Jiang, Pingguo, Wu Pengfei, Hu Xiaojun,etal. Copper slag comprehensive utilization development and new technology is put forward[J]. China Mining Magazine, 2016, 25(2): 76-79.)

[2]朱茂兰, 熊家春, 胡志彪, 等. 铜渣中铜铁资源化利用研究进展[J]. 有色冶金设计与研究, 2016, 32(2): 15-17. (Zhu Maolan, Xiong Jiachun, Hu Zhibiao,etal. Research progress in resource utilization of iron and copper in copper smelting slag[J]. Nonferrous Metals Engineering & Research, 2016, 32(2): 15-17.)

[3]李镇坤, 文衍宣, 苏静. 无烟煤直接还原铜渣中铁矿物工艺研究[J]. 无机盐工业, 2014, 46(6): 51-55. (Li Zhenkun, Wen Yanxuan, Su Jing. Directive reducing of iron minerals from copper slag with anthracite as reductant[J]. Inorganic Chemicals Industry, 2014, 46(6): 51-55.)

[4]赵凯, 宫晓然, 李杰, 等. 直接还原法回收铜渣中铁、铜和锌的热力学[J]. 环境工程学报, 2016, 10(5): 2638-2646. (Zhao Kai, Gong Xiaoran, Li Jie,etal. Thermodynamics of recovering iron, copper, zinc in copper slag by direct reduction method[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2638-2646.)

[5]杨慧芬, 袁运波, 张露, 等. 铜渣中铁铜组分回收利用现状及建议[J]. 金属矿山, 2012,431(5):165-168. (Yang Huifen, Yuan Yunbo, Zhang Lu,etal. Present situation and proposed method of recycling iron and copper from copper slag[J]. Metal Mine, 2012, 431(5): 165-168.)

[6]王琛, 田庆华, 王亲猛, 等. 铜渣有价金属综合回收研究进展[J]. 金属材料与冶金工程, 2014, 42(6): 50-56. (Wang Chen, Tian Qinghua, Wang Qinmeng,etal. Research progress in comprehensive recovery of valuable metals from copper slag[J]. Metal Materials and Metallurgy Engineering, 2014, 42(6): 50-56.)

[7]曾军龙, 肖坤明. 分散剂用于炉渣中回收铁的研究[J]. 有色金属科学与工程, 2011, 2(6):71-73. (Zeng Junlong, Xiao Kunming. The research on using dispersant agent to iron recovery in slag[J]. Nonferrous Metals Science and Engineering, 2011, 2(6):71-73.)

[8]Rudnik E, Burzynska L, Gumowska W. Hydrometallurgical recovery of copper and cobalt from reduction-roasted copper converter slag[J]. Minerals Engineering, 2009, 22(1): 88-95.

[9]聂溪莹, 肖绎. 模拟回转窑工艺研究铜渣中Fe、Pb、Zn 的提取[J]. 工业加热, 2015, 44(2): 71-74. (Nie Xiying, Xiao Yi. Studying on the extraction of Fe、Pb、Zn from the copper slag by simulation of the rotary kiln process[J]. Industrial Heating, 2015, 44(2): 71-74.)

[10]杨慧芬,景丽丽,党春阁. 铜渣中铁组分的直接还原与磁选回收[J]. 中国有色金属学报, 2011, 21(5): 1165-1170. (Yang Huifen, Jing Lili, Dang Chunge. Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(5): 1165-1170.)

[11]王爽, 倪文, 王长龙, 等.铜尾渣深度还原回收铁工艺研究[J]. 金属矿山, 2014, 453(3): 156-160. (Wang Shuang, Ni Wen, Wang Changlong,etal. Study of deep reduction process for iron recovery from copper slag tailings[J]. Metal Mine, 2014, 453(3): 156-160.)

Technology of recovery of iron and zinc from copper slag by RHF direct reduction

Cao Zhicheng1,2, Sun Tichang1, Wu Daohong2, Xue Xun2, Liu Zhanhua2

(1. Key Laboratory of High-Efficient Mining and Safety of Metal Mines,Ministry of Education,University of Science and Technology Beijing,Beijing 100083,China;2. Beijing Shenwu Environment & Energy Technology Co. Ltd, Beijing 102200, China)

By using RHF (Rotary hearth furnace) direct reduction method, the metallized pellets and a high grade zinc oxide dust can be obtained from the carbon bearing pellets of copper slag at a high temperature. The iron can be recovered by melting or grinding/magnetic separation method as a raw material for steel bearing copper. Results of the pilot experiment showed that a molten iron with a purity more than 94% mass can be gained from the copper slag by process of RHF direct reduction and gas melting separation, the recovery ratio is more than 93% mass. An iron powder of more than 90% mass purity can be obtained by process of RHF direct reduction and grinding and magnetic separation,the recovery ratio is more than 85%. A dust of more than 60% mass Zinc can also be gained with the two kinds of process mentioned above. It is believed that after direct reduction in RHF, fayalite (Fe2SiO4) and magnetite (Fe3O4) in the copper slag can be changed into the metallized pellets containing iron(Fe), quartz (SiO2) and a small amount of augite (Ca(Fe,Mg)Si2O6), which can be recovered by the magnetic separation or melting process.

copper slag; rotary hearth furnace(RHF); direct reduction; magnetic separation; gas smelting

10.14186/j.cnki.1671-6620.2017.01.007

TF 09; TD 923

A

1671-6620(2017)01-0038-04

猜你喜欢
铜渣金属化铁粉
基于铜渣缓冷制度的铜渣包温度仿真分析
山西冶金(2023年10期)2024-01-07 02:02:52
以含碳固废为还原剂的铜渣颗粒直接还原正交实验
SiO2包覆羰基铁粉及其涂层的耐腐蚀性能
陶瓷学报(2021年5期)2021-11-22 06:35:34
天然微合金铁粉中钒、钛、铬含量测定的研究
昆钢科技(2020年6期)2020-03-29 06:39:42
工业铜渣固相改质后分离铁的实验研究①
矿冶工程(2020年1期)2020-03-25 01:46:56
铜渣活化试验研究
铜铟镓硒靶材金属化层制备方法
微波介质陶瓷谐振器磁控溅射金属化
钨基密封材料化学镀Ni-P镀层的制备方法
关于图例错误的更正