浅谈高中学生数学思维障碍的突破

2015-11-30 04:05曾小玲
中国校外教育(上旬) 2015年10期
关键词:思维障碍高中学生数学思维

曾小玲

摘要:对某些问题的解答,许多学生感到困难,并不是因为这些问题的解答太难以致学生无法解决,而是其思维形式或结果与具体问题的解决存在着差异。也就是说,这时候,学生的数学思维存在着障碍,这种思维障碍,有的是来自于我们教学中的疏漏,而更多的则来自于学生自身,来自于学生中存在的非科学的知识结构和思维模式。

关键词:数学思维 思维障碍 高中学生

思维是人脑对客观现实的概括和间接的反映,反映的是事物的本质及内部的规律性。所谓高中学生数学思维,是指学生在对高中数学感性认识的基础上,运用比较、分析、综合、归纳、演绎等思维的基本方法,理解并掌握高中数学内容而且能对具体的数学问题进行推论与判断,从而获得对高中数学知识本质和规律的认识能力。高中数学课堂上,有不少问题的解答,其原因就是思维形式或结果与具体问题的解决存在着差异,即学生的数学思维存在着障碍。因此,研究高中学生的数学思维障碍,对于增强高中学生数学教学的针对性和实效性有十分重要的意义。

一、高中学生数学思维障碍的表现形式

根据教学经历,认真分析学生的解题信息,结合心理学原理,从思维的角度对高中学生解数学题的思维障碍因素进行剖析。由于高中数学思维障碍产生的原因不尽相同,作为主体的学生的思维习惯、方法也都有所区别,所以,高中数学思维障碍的表现各异,具体的可以概括为:

1.思维的模糊性,造成分析的片面性

审题为分析限定了思维的范围和方向;联想为分析提供了感性材料;分析以审题和联想为基础,审题与联想中的思维缺陷必然会影响分析的科学进行,成为分析的心理障碍,在审题中若题目涉及的知识概念不明确就会造成思维的模糊、思维的方向不明,这势必影响联想的展开,从而造成分析的不全面,易犯以偏概全的错误。

2.思维的封闭性,造成分析的单一型

遇到较为复杂或综合性较强的题目,由于其内部成分多、关系复杂,分析时就要运用多角度的思维,即对题中成分和关系作多指向、多种方式的分析,以揭示出题目中复杂的关系。思维能力较差的学生习惯于用单一思维来分析题目,用一条思维路线、从一个思维角度处理问题,往往缺乏合理解题的能力。

3.非变通思维造成分析断路

变通性是思维活动不僵化,能够随机应变、触类旁通、灵活解题。就一般而言,学生思维的依赖性较明显,分析思维还处于初级和经验阶段,变通问题的能力还不强。若没有相应的解题模式的借鉴、摹仿就会造成分析断路。

由此可见,学生数学思维障碍的形成,不仅不利于学生数学思维的进一步发展,而且也不利于学生解决数学问题能力的提高。所以,在平时的数学教学中注重突破学生的数学思维障碍就显得尤为重要。

二、高中学生数学思维障碍的突破

1.教师要了解和掌握学生的基础知识情况

在高中数学起始教学中,教师必须着重了解和掌握学生的基础知识状况,尤其在讲解新知识时,要严格遵循学生认知发展的阶段性特点,照顾到学生认知水平的个性差异,强调学生的主体意识,发展学生的主动精神,培养学生良好的意志品质;同时要培养学生学习数学的兴趣。兴趣是最好的老师,学生对数学学习有了兴趣,才能产生数学思维的兴奋灶,也就是更大程度地预防学生思维障碍的产生。教师可以帮助学生进一步明确学习的目的性,针对不同学生的实际情况,因材施教,分别给他们提出新的更高的奋斗目标,使学生有一种“跳一跳,就能摸到桃”的感觉,提高学生学好高中数学的信心。

如高一年级学生刚进校时,一般我们都要复习一下二次函数的内容,而二次函数中最大、最小值尤其是含参数的二次函数的最大、小值的求法学生普遍感到比较困难,为此我作了如下题型设计,对突破学生的这个难点问题有很大的帮助,而且在整个操作过程中,学生普遍(包括基础差的学生)情绪亢奋,思维始终保持活跃。设计如下:

(1)求出下列函数在x∈[0,3]时的最大、最小值:①y=(x-1)2+1,②y=(x+1)2+1,③y=(x-4)2+1

(2)求函数y=x2-2ax+a2+2,x∈[0,3]时的最小值。

(3)求函数y=x2-2x+2,x∈[t,t+1]的最小值。

上述设计层层递进,每做完一题,适时指出解决这类问题的要点,大大地调动了学生学习的积极性,提高了课堂效率。

2.重视数学思想方法的教学,指导学生提高数学意识

数学意识是学生在解决数学问题时对自身行为的选择,它既不是对基础知识的具体应用,也不是对应用能力的评价,数学意识是指学生在面对数学问题时该做什么及怎么做,至于做得好坏,当属技能问题,有时一些技能问题不是学生不懂,而是不知怎么做才合理,有的学生面对数学问题,首先想到的是套哪个公式,模仿哪道做过的题目求解,对没见过或背景稍微陌生一点的题型便无从下手,无法解决,这是数学意识落后的表现。数学教学中,在强调基础知识的准确性、规范性、熟练程度的同时,我们应该加强数学意识教学,指导学生以意识带动双基,将数学意识渗透到具体问题之中。

3.诱导学生暴露其原有的思维框架,消除思维定势的消极作用

在高中数学教学中,我们不仅仅是传授数学知识,培养学生的思维能力也应是我们的教学活动中相当重要的一部分。而诱导学生暴露其原有的思维框架,包括结论、例证、推论等对于突破学生的数学思维障碍会起到极其重要的作用。

使学生暴露观点的方法很多。例如,教师可以与学生谈心的方法,可以用精心设计的诊断性题目,事先了解学生可能产生的错误想法,要运用延迟评价的原则,即待所有学生的观点充分暴露后,再提出矛盾,以免暴露不完全,解决不彻底。有时也可以设置疑难,展开讨论,疑难问题引人深思,选择学生不易理解的概念,不能正确运用的知识或容易混淆的问题让学生讨论,从错误中引出正确的结论,这样学生的印象特别深刻。而且通过暴露学生的思维过程,能消除消极的思维定势在解题中的影响。当然,为了消除学生在思维活动中只会“按部就班”的倾向,在教学中还应鼓励学生进行求异思维活动,培养学生善于思考、独立思考的方法,不满足于用常规方法取得正确答案,而是多尝试、探索最简单、最好的方法解决问题的习惯,发展思维的创造性也是突破学生思维障碍的一条有效途径。

总之,教师要善于研究和分析学生解题障碍的表面信息,从而洞察到学生解题的真正的障碍因素,在此基础上,有针对性地干预、指导,定能突破障碍。

猜你喜欢
思维障碍高中学生数学思维
培养高中学生科学精神的实践探索
在阅读的乐趣中提高高中学生的英语能力
浅析高中生数学思维障碍的成因及对策
“审题”在应用题教学中的作用
让小学数学活动绽放数学思维
高等数学的教学反思
数学归纳法在高中数学教学中的应用研究
培养数学意识发展思维能力的研究
化学学习中的障碍及克服方法
高中物理问题教学中突破学生思维障碍的策略