刘芸 陆洪毅 王学慧
[摘 要]电子技术是研究用电子电路对各种电信号进行分析处理的技术,应用面极其广泛,具有自身的理论和实践体系。学会用工程近似方法处理问题,认识各种常用单元电路,学会常用仪器仪表使用和实际电路测试,是“模拟电子技术基础”教学的基本要求。针对学生在学习时存在的诸多难点问题,以上教学策略的实施能有效地解决一些疑难问题,帮助学生提升学好模拟电子技术的信心,激发进一步钻研电子技术的兴趣。
[關键词]模拟电子技术 教学策略 单元电路
[中图分类号] TN710.4 [文献标识码] A [文章编号] 2095-3437(2015)01-0120-04
一、引言
电子技术是研究用电子电路对各种电信号进行分析处理的技术,应用面极其广泛,具有自身的理论和实践体系。“模拟电子技术基础”作为电子技术方面入门性质的课程,是电气、电子信息类等专业本科学生必修的一门技术基础课。该课程主要介绍半导体器件的基本特性、模拟电路及系统分析和设计的基本理论、基本方法和基本技能。由于半导体器件和模拟电路种类繁多,性能复杂,分析和设计方法具有很强的工程性和实践性,因此初学者往往感到这门课程很难学,戏称“模电”为“魔电”。
究竟这门课程的学习难在哪?在教学中如何化解这些难点问题,本文结合作者的教学实践进行了一些探讨。
二、模拟电子技术的主要学习难点
(一)元器件特性难理解
电子电路是由二极管、三极管等半导体器件和电阻、电容等无源元件组成的实用电路,包含模拟电路和数字电路两大类。模拟电子技术主要学习模拟电路的分析计算方法,其基本思想是运用线性电路的基本理论和方法,通过求解电路中电压、电流等物理量,来分析模拟电路的各项性能指标,或确定电路中元器件的参数值。由电路理论我们知道:基尔霍夫电压电流定律(KVL、KCL)和元器件的电压电流关系(VAR)是求解电压、电流的两个基本出发点。因此模拟电子技术课程首先介绍半导体器件的基本特性及VAR。
常用的半导体元器件有二极管、三极管和场效应晶体管等。对器件工作特性的理解,涉及到半导体PN结微观机理、器件端口非线性VAR、电容效应、主要参数和温度特性等诸多内容,尤其是三极管和场效应晶体管是三端元件,端与端之间的VAR更加复杂。这些半导体元器件表现出的非线性VAR的复杂性及温度特性让初学者感到头绪乱、难理解。
(二)工程近似方法难适应
在接触模拟电子技术之前,学生被训练成的思维模式是习惯用精确计算方法分析解决问题。而在模拟电子技术中,常采用工程近似方法,即根据实际情况采用不同的简化方法分析各种电子电路。近似体现在具体情况具体分析,突出主要矛盾,简化电路的分析计算模型,这种近似虽然会造成计算精度上的误差,但可以大大地简化分析计算的难度和工作量,而且也完全符合实际电子电路的精度要求。在模拟电路的分析计算中,有多种近似处理方法,如基本放大电路的交直流分析,对三极管采用不同的近似模型;运放应用电路的分析,对运放采用理想化的近似;功放电路的功率计算,采用大信号图解分析对功率管做有效的近似,等等。学生头脑中本来还没有这种工程近似分析的思维方式,一下子面对这么多近似化简的具体情况,容易不知所措,难适应。
(三)交直流的作用和相互影响难想象
最基本的模拟电路是放大电路,即对输入的模拟信号进行放大处理。放大电路也是构成各种功能模拟电路的基本电路。在分析放大电路时,一般用正弦波表示输入的模拟信号,而电路要起到正常的放大作用,需要加直流电源,以保证电路中的三极管处于放大的状态,同时还需要设置合适的静态工作点,以保证能对输入信号进行不失真的放大。因此在实际的放大电路中,直流电源的作用和交流信号的作用总是共存的,但在分析计算时,往往采用分别计算方式,即在直流等效电路中计算静态工作点,在交流等效电路中计算动态参数。在这些分析计算中,交直流电压电流是如何相互影响的?何处体现出了这种影响?对用图解法定性分析这种影响,学生往往不容易理解。
另外模拟电路都是反馈电路,放大电路引入负反馈以改善电路的性能,信号产生器电路引入正反馈以实现振荡。由于反馈作用,输出端的电压电流会影响输入端的电压电流,有的只有交流影响,有的只有直流影响,有的交直流影响共存,这种电压电流相互影响关系使得电路分析计算更加复杂,学生更是难以想象这种作用对电路性能的影响。
(四)基本单元电路种类繁多性能各异难掌握
尽管当今电子技术发展日新月异,新的电子产品层出不穷,电路系统的集成度越来越高,功能越来越全,但是构成这些电路系统核心的基本单元电路基本上没有变化。掌握这些基本单元电路的电路结构,学会分析计算这些电路的性能指标,是模拟电子技术课程的学习目标。
模拟电路系统的基本单元电路包括低频电子电路和高频电子电路。“模拟电子技术基础”课程主要涉及低频电子电路的分析与计算,其中包含了许多基本单元电路,如晶体三极管基本放大电路的三种组态;场效应管放大电路三种组态;功率放大电路;多级放大电路;差分式放大电路;电流源电路;反馈电路;集成运放电路及应用电路;稳压电路等等。这些单元电路各有其基本的电路结构和性能特点,在分析计算时,考虑的细节问题不同,采用的近似方法也不同。如基本放大电路的作用是不失真地放大微小的输入信号,采用微变等效电路模型进行分析计算,而功率放大电路的作用是输出大功率,即在电路的输出端得到尽量大的输出电压和输出电流,常采用图解法分析电路的功率问题;为了克服直接耦合多级放大电路的零点漂移问题,采用差分电路结构,等等。这么多的基本电路结构,在分析计算时要考虑的细节和方法,都是与实际需求相关,没有统一的规律和方法可循,正因如此,学生在学习时往往感觉很凌乱,摸不着头绪,不容易掌握其核心思想方法,碰到一些实际电路问题就容易不知所措。由于缺乏对实际电路的了解和见识,即便是照葫芦画瓢会计算各种电路的性能指标,但还是难以想象这些单元电路究竟是如何体现它的功能的。
三、化解难点的一些教学策略
(一)利用简单二极管电路,引入非线性电路近似处理方法
目前许多的模拟电子技术教材,在关于二极管、三极管和场效应管器件介绍这部分内容中,花了相当的篇幅描述器件的工作原理、特性曲线和主要参数,而在放大电路分析时才引入图解法和微变等效电路模型方法。图解法分析放大电路的工作过程是教学难点,学生往往对曲线之间的映射关系不清楚。
其實图解法是线性和非线性电阻电路的一种分析方法。我们可以在分析简单二极管电路时,引入图解法和一般非线性电阻电路的近似处理方法,使学生在头脑中建立起非线性电阻电路分析的一般思路。
分析非线性电阻电路的基本依据仍然是KVL、KCL和元件的伏安关系。对如图1所示的二极管串联电路(a)及二极管特性曲线(b),应用KVL可以得出电路方程:
■
图1
E=VD+ID R (1)
此方程中的VD和ID也要符合二极管的伏安关系,因为电路中的二极管处于正向导通偏置,其伏安关系曲线如图1(b)所示,关系式为
■
联立求解式(1)、(2),可以得到此电路中的电压VDQ和电流IDQ,在特性曲线上表现为一个点Q,称为静态工作点(简称Q点),此时电路中的二极管相当于一个VDQ / IDQ的直流电阻。由于(2)式是非线性方程,求解这个方程组是十分困难的,这就是非线性电路计算的难处所在,为此在实际中常采用图解法、近似处理法来解决此问题。
在(ID,VD)坐标系中,(1)式是一条直线,如图2所示,它与纵轴的交点由负载电阻R所决定,因而这条直线也称为负载线,它反映了VD和ID受电路制约的关系。同时VD和ID又要符合二极管的特性曲线关系,因此这两条曲线的交点Q所对应的就是VDQ和IDQ,即为以上方程组的解,这就是图解法。图解法的精度取决于坐标系的刻度,往往不是很精确,但是理解了用图解法表示电压电流关系,就容易理解交流信号作用的分析过程及二极管交流电阻的意义。
■
图2 图3
在电路中加上一个幅度很小的正弦波信号电压vi,其幅度远远小于直流电源E的幅值,如图3(a)所示,用图解容易得到电路中电流ID和电压VD的变化规律曲线,如图3(b)所示,用该图形可以说明以下3个问题:
(1)VD和ID相当于在Q点叠加了一个变化的电压和电流,输入vi的幅度越小,这个变化的电压和电流的波形越接近正弦波;vi的幅度越大,由于特性曲线的非线性,对应的电压、电流波形上下半周将不对称,称为非线性失真。
(2)当输入vi幅度很小时,在Q点附近,可以用很小的线段代替Q点附近的曲线,该线段的斜率为rd=△Vd /△Id,作为二极管的交流电阻。显然,Q在曲线不同的位置,小线段的斜率不同,即rd不同,说明rd的大小与Q点电压VDQ和电流IDQ有关。这就是对非线性曲线的一种分段线性化近似处理方法。
同样,将二极管特性曲线用图4所示模型等效,也是一种线性化近似处理方法。
■
图4
(3)在图5所示电路中,假设单独分析正弦交流小信号作用于电路,可以将二极管等效为一个交流小电阻rd,(2)由式可得,rd=△Vd /△Id=dVd /dId≈26mV / IDQ,这就是正偏二极管或正偏pn结的微变等效电路模型。
■
图5
用简单二极管电路说明图解法、线性化近似处理方法和小信号微变等效电路模型方法,学生容易理解,也能建立非线性电路分析的基本思路。在学习三极管放大电路时,再进一步运用图解法和微变等效电路模型方法分析计算,学生就能更好地理解放大电路的放大原理、三极管微变等效电路模型的意义,从而化解对放大电路放大过程分析不清这个难点。
(二)强调单元电路分析的基本步骤,引导分析思路和方法
前面提到,基本单元电路是构成各种实际电子系统的基石,掌握了基本单元电路的结构、工作原理和特性,就容易分析和设计具有实际功能的各种电子系统。面对众多的结构和性能各异的基本单元电路,我们采用所谓“五步教学法”,即固定的5个步骤讲解基本单元电路:
(1)电路功能和电路结构
以实际功能需求为先导,或是在总结已学单元电路不足的基础上,引出要学习的单元电路,强调电路结构的构思方法和特点,使学生在认识电路同时,也能对电路构成的基本规律有所了解。例如在学习功率放大电路时,一般的教学策略就是,先简单说明单管甲类功放电路的效率低的原因,提高效率的途径,从而引出互补对称乙类功率放大电路结构。然后说明构成电路的结构要素和关键元件,以帮助学生认识和记忆。
(2)工作原理分析
在这个环节,主要是定性分析电路中各个元件的作用,电路的工作过程,从而说明电路的功能。有些单元电路的学习,以定性分析为主,如负反馈放大电路的分类判断,正弦波振荡电路的分析等。反馈电路的分析和判断,可以说是模拟电子技术学习的难中之难,针对具体电路进行判断的过程是,首先要正确辨识反馈网络和基本放大器的输入端,然后判断反馈网络与输入信号的位置关系,从而判断是串联或并联反馈,再根据反馈量和输出量的关系,判断是电压或电流反馈,最后根据瞬时极性法判断是正反馈还是负反馈。以上判断过程对负反馈放大电路和正弦波振荡电路分析都适用,应该强调反馈量仅仅取决于输出量,与输入量无关这个基本出发点。
(3)主要参数分析计算
在单元电路的学习中,有些电路要求掌握一些性能参数的计算,如放大电路静态工作点和动态参数的计算、功放电路输出功率和效率的计算,集成运放应用电路的分析计算,稳压电路的输出电压计算等等。这些计算中都采用了工程近似方法,不同的電路分析采用不一样的近似方法,如静态工作点的计算在直流通路中进行,三极管的发射极正偏时,采用0.7V模型近似,而在求放大电路的放大倍数、输入阻抗和输出阻抗等动态参数时,三极管采用的是微变等效电路模型,这些问题,与前面讨论的非线性电路近似处理方法联系起来,就好理解啦。讨论这些电路的计算问题时,一定要强调说明不同电路计算的近似方法和手段,学生才会有的放矢地加以运用。
(4)应用及注意事项
单元电路都是构成实际电子产品的基本电路。为了加深学生对模拟电路的认识,提高学习兴趣,激发探索精神,在讲授一些单元电路时,可以适当举例,说明这些电路在实际中的应用。如学习功放电路时,可以扩音器电路示例,在学习直流稳压电源时,可以一个实际稳压器电路为例,还有集成运放构成的各种应用电路等等。有两种教学策略说明单元电路的应用,一是从引入实际电路开始进入单元电路的学习,在实际电路图中框出单元电路;二是在学完后举例说明单元电路的实际应用,这时应从应用的角度说明应用电路的构成原则、元器件参数的选择、应用条件等注意事项,有条件的话,可在课堂上做实物演示或仿真演示。
(5)归纳小结
对于每个单元电路讲解的最后,都应该按照以上4个步骤进行归纳小结,使学生对该单元电路结构特点和功能的加深认识、对该电路的分析方法和手段加深印象。再通过例题讲解或练习,使学生学会分析和应用。
我们强调对单元电路结构的认识,这样在分析一个具体的、复杂的实际电路图时,就容易从中划分出一个个的单元电路,然后根据单元电路的功能和连接关系,推测出该实际电路的功能,这也是分析实用电子系统的基本方法。
(三)仿真和实物实验相配合,提高认知和动手能力
电子技术是一门理论和实践都很强的学科,要学好模拟电子技术,离不开配套的课后实验环节。通过实物实验,学生可以加深对知识的理解,同时学会使用常用电路测试仪表,了解电路测试技术,提高动手能力。但以往的课后实验都是在单元电路学完后才开展的,在学习时仍然存在不好理解等问题。
随着计算机技术的飞速发展,以计算机辅助设计为基础的电子设计自动化(EDA)技术已成为电子电路分析与设计的主要工具,EDA系统中所包含的虚拟仿真技术可以作为电子技术课堂教学有效的辅助手段,实现对单元电路的演示,帮助学生理解所学知识。我们在教学中采用了Electronics Workbench(EWB)软件,在课堂上演示基本放大电路、功放电路、振荡电路等单元电路的功能,能够形象地看到一些电路现象,如输出波形的变化及影响因素等。
现在有一种趋势,就是电子技术的课程教学越来越软化,甚至全部用EDA软件仿真替代实物实验,这是不可取的。我们认为模拟电子技术课程教学,一定要仿真和实物实验相配合。在讲授元器件时,把二极管、三极管、集成运放芯片等拿到课堂上展示。通过在面包板上搭建一个个实物电路,并通过实际仪器仪表对其进行测试和观察,学生才能感受真实单元电路的魅力,提高认知和动手能力。
四、结束语
学会用工程近似方法处理问题,认识各种常用单元电路,学会常用仪器仪表使用和实际电路测试,是“模拟电子技术基础”教学的基本要求。针对学生在学习时存在的诸多难点问题,以上这些教学策略的实施能有效地解决一些疑难问题,帮助学生提升学好模拟电子技术的信心,激发进一步钻研电子技术的兴趣。
[ 参 考 文 献 ]
[1] 刘芸,等.电路与电子技术基础[M].北京:高等教育出版社,2006.
[2] 童诗白,等.模拟电子技术基础(第四版)[M].北京:高等教育出版社,2009.
[责任编辑:张 雷]