关于小学数学教学中渗透数学思想方法的思考

2015-04-29 09:20牛淑红
文化产业 2015年1期
关键词:变换组合数形结合

牛淑红

摘 要:小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法是增强学生数学观念,形成良好思维素质的关键。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。

关键词:化归;数形结合;变换;组合;

中图分类号:G633 文献标识码:A 文章编号:1674-3520(2015)-01-00-02

小学数学教学的根本任务是全面提高学生素质,其中最重要的因素是思维素质,而数学思想方法是增强学生数学观念,形成良好思维素质的关键。如果将学生的数学素质看作一个坐标系,那么数学知识、技能就好比横轴上一因素,而数学思想方法就是纵轴上的内容。淡化或忽视数学思想方法的教学,不仅不利于学生从纵横两个维度上把握数学学科的基本结构,也必将影响其能力的发展和数学素质的提高。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。

古往今来,数学思想方法不计其数,每一种数学思想方法都闪烁着人类智慧的火花。一则由小学生的年龄特点决定有些数学思想方法他们不易接受。二则要想把那么多的数学思想方法渗透给小学生也是不大现实的。因此,我们应该有选择地渗透一些数学思想方法。笔者认为,以下几种数学思想方法学生不但容易接受,而且对学生数学能力的提高有很好的促进作用。

1、化归思想

化归思想是把一个实际问题通过某种转化、归结为一个数学问题,把一个较复杂的问题转化、归结为一个较简单的问题。应当指出,这种化归思想不同于一般所讲的“转化”、“转换”。它具有不逆转的单向性。

例1狐狸和黄鼠狼进行跳跃比赛,狐狸每次可向前跳41/2米,黄鼠狼每次可向前跳23/4米。它们每秒钟都只跳一次。在赛途中,从起点开始,每隔123/8米设有一陷阱,当它们之中有一个掉进陷阱时,另一个跳了多少米?

这是一个实际问题,但通过分析知道,当狐狸(或黄鼠狼)第一次掉进陷阱时,它所跳过的距离即是它每次所跳距离41/2(或23/4)米的整倍数,又是陷阱间隔的123/8米的整倍数,也就是41/2和123/8的“最小公倍数”(或23/4和123/8的“最小公倍数”)。针对两种情况,再分别算出各跳了几次,确定谁先掉入陷阱,归结为一个求“最小公倍数”的问题,即把一个实际问题转化、归结为一个数学问题,这种化归思想正是数学能力的表现之一。

2、数形结合思想

数形结合思想是充分利用“形”把一定的数量关系形象地表示出来。即通过作一些如线段图、树形图、长方形面积图或集合图来帮助学生正确理解数量关系,使问题简明直观。

例2,一杯牛奶,甲第一次喝了半杯,第二次喝了剩下的一半,就这样每次都喝了上一次剩下的一半,甲五次一共喝了多少牛奶?

此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,1—1/32就为所求,这里不但向学生渗透了数形结合思想,还向学生渗透了类比的思想。

3、变换思想

变换思想是由一种形式转变为另一种形式的思想。如解方程中的同解变换,定律、公式中的例题等价变换,几何形体中的变积变换,理解数学问题中的逆向变换等等。

例3求1/2+1/6+1/12+1/20+……+1/380的和。

仔细观察这些分母,不难发现:2=1×2,6=2×3,12=3×4,20=4×5……380=19×20,再用拆分的方法,考虑分式中的一般项a[,n]=1/n×(n+1)-1/n+1

于是,问题转换为如下求和形式

原式=1/1×2+1/2×3+1/3×4+1/4×5+……+1/19×20

=(1—1/2)+(1/2—1/3)+(1/3—1/4)+(1/4—1/5)+……

+(1/19—1/20)

=1—1/20

=19/20

4、组合思想

组合思想是把所研究的对象进行合理的分组,并对可能出现的各种情况既不重复又不遗漏地一一求解。

例4在下面的乘法算式中,相同的汉字代表相同的数字,不同的汉字代表不同的数字,求这个算式。

从小爱数学

×4

学数爱小从

分析:由于五位数乘以4的积还是五位数,所以被乘数的首位数字“从”只能是1或2,但如果“从”=1,“学”×4的积的个位应是1,“学”无解,所以“从”=2。

在个位上,“学”×4的积的个位是2,“学”=3或8。但由于“学”又是积的首位数字,必须大于或等于8,所以“学”=8。

在千位上,由于“小”×4不能再向万位进位,所以“小”=1或0。若“小”=0,则十位上“数”×4+3(进位)的个位是0,这不可能,所以“小”=1。

在十位上,“数”×4+3(进位)的个位是1,推出“数”=7。

在百位上,“爱”×4+3(进位)的个位是还是“爱”,且百位必须向千位进3,所以“爱”=9。

帮欲求乘法算式为

21978

×4

87912

上面这种分类求解方法既不重复,又不遗漏,体现了组合思想。

此外,还有符事情思想,对应思想、极限思想、集合思想等,在小学数学教学中都应注意有目的、有选择的、适时地进行渗透。

那么,小学数学教学应如何加强数学思想方法的渗透呢?

1、提高渗透的自学性

数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的,而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中。教师讲不讲,讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉。对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。其次要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,对于每一章每一节,都要考虑如何结合具体内容进行数学思想方法渗透,渗透哪些数学思想方法,怎么渗透,渗透到什么程度,应有一个总体设计,提出不同阶段的具体教学要求。

2、把握渗透的可行性

数学思想方法的教学必须通过具体的教学过程加以实现。因此,必须把握好教学过程中进行数学思想方法教学的契机——概念形成的过程,结论推导的过程,方法思考的过程,思路探索的过程,规律揭示的过程等。同时,进行数学思想方法的教学要注意有机结合、自然渗透,要有意识地潜移默化地启发学生领悟蕴含于数学知识之中的种种数学思想方法,切忌生搬硬套、和盘托出、脱离实际等适得其反的做法。

猜你喜欢
变换组合数形结合
论高中数学中的三角函数变换
基于Logic Converter的组合逻辑电路设计
现阶段市场营销组合及影响因素研究
当前市场营销组合与影响因素剖析
球类材料的合理利用与组合
数形结合在解题中的应用
浅析数形结合方法在高中数学教学中的应用
用联系发展的观点看解析几何
妙用数形结合思想优化中职数学解题思维探讨
变换观察角度分析数学解题方法研究