伟力
摘 要: 变式教学是一种以教学目标为基础,灵活创新转化命题的教学方式,具有适用范围广、学生参与度高、理解难度小的特点,被广泛应用于数学教学过程中。变式教学能够通过变化命题思路、创新解题技巧开发学生的创新思维能力,在数学教学中具有至关重要的应用价值。本文介绍了变式教学的概念,并举例说明变式教学在初中数学教学中的具体应用,最后对变式教学的应用价值进行了分析。
关键词: 变式教学 初中数学 教学应用
引言
初中年龄段学生的认知思维处于形象思维向抽象思维过渡阶段,而人教版新课程标准认为初中数学应该以具象与抽象结合,开发学生空间思维能力,学习内容应该富有挑战性和创新性。因此初中数学题目一般具有一题多解、多题一解的特点。而变式教学法就是一种符合新课程标准理念,以培养学生创新思维能力、自主探究能力为主的新型教学方法,在提高数学课堂教学效率和质量方面具有重要价值。
1.变式教学概念
变式教学是指教师在基本教学目标的引导下,利用各种现实实例或具象材料表达事物的本质属性,或者描述更新变化的非同类事物的相关特性,从而加速学生理解和掌握事物的本质属性[1]。变式教学法以灵活创新转化命题表述方式基本方式,让学生在具象思维理解上转化到空间抽象思维理解层面,从而加深对事物本质属性的理解,熟练掌握数学概念、公式、定理等的运用范围和运用技巧。同时让学生在立体空间层次上转变思维方式,能够全面地、多角度地看待数学问题,有效培养学生的空间思维能力和自主创新能力。
2.变式教学在初中数学教学中的应用
2.1概念教学
2.2命题教学
在命题教学中采用变式教学法能够促进学生更清楚全面理解题干的内涵,帮助学生将已学的之时感念和数学解题技巧纳入数学题目网格中,让学生从多角度寻求解题思路。
例:求解方程(2x-y)(x-2y)=11有多少组整数解?
解:由于(2x-y)(x-2y)两个是整数,且两个相乘的乘积为整数,那么(2x-y)、(x-2y)两个数分别为-1、-11或者1、11。根据推导可以将(2x-y)、(x-2y)两个数的x、y取值分为以下四个组进行讨论:变式一:2x-y=1,x-2y=11,解方程组得:x=-3,y=-7。变式二:2x-y=11,x-2y=1,解方程组得:x=7,y=3。变式三:2x-y=-1,x-2y=-11,解方程组得:x=3,y=7。变式四:2x-y=-11,x-2y=-1,解方程组得:x=-7,y=-3。由此得出(x,y)有四对整数解,分别是(-3,-7),(7,3),(3,7),(-3,-7)。
2.3例题教学
2.4图形变换
图形变换法是在不变更原本题目的前提下,对原题的图形进行转变后得出不一样的图形,以此获得更多有利条件。图形变换方式在初中几何中的运用较广泛,学生可以通过变换图形获得题干中未给出的已知条件,找出解题思路。比如:已知三角形两边长为4和4,求解三角形第三条边的范围。变式一:倘若该三角形为直角三角形,第三条边长为12。变式二:三角形为锐角三角形来求解。变式三:该三角形为钝角三角形类求解。
3.变式教学在初中数学教学中的应用价值
3.1有助于循序渐进教学的实现
变式教学在初中教学中的广泛应用,能够通过由浅及深、由表及里的变式增强初中数学教学的梯度性[2]。变式教学让学生从多个角度、不同层次对数学题目进行详细剖析,不断转变解题思路和解题技巧,从而掌握了一题多解、一法多用的数学解题方法,有效提高学生的数学解题效率。此外学生在循序渐进的数学解题过程中加深了对数学概念的理解,锻炼了学生的创新思维能力。
3.2提高数学课堂教学效率
教师运用变式教学法,将一题多解、一法多用、多题一解等解题技巧教会学生,让学生在纷繁复杂的题型中能够快速找到正确的解题方法,提高了学生数学解题效率,加深了学生对数学概念和知识点的印象,从而大大提高了数学教学质量。
结语
变式教学在初中数学教学中应用广泛,在提高数学课堂教学效率、培养学生创新思维能力和自主探究能力方面具有重要意义。变式教学需要数学教师具备渊博的科学文化知识,根据初中年龄段学生的认知规律和心理特点,在教学目标的指导下精心细致设计教学流程,运用辩证思维的方法,突出教学重难点,灵活转变教学手段,从而实现初中数学有效教学。
参考文献:
[1]汤连成.浅谈变式教学在初中数学教学中的运用[J].基础教育论坛,2013(9):34-35.
[2]陶贵斌.例谈变式教学应遵循的五个原则[J].数学教学研究,2010(09).