慢性粒细胞白血病对伊马替尼的耐药机制研究进展

2014-01-22 05:44苗圣超糜坚青
中国临床医学 2014年6期
关键词:伊马替尼酪氨酸激酶

苗圣超 糜坚青

(上海交通大学医学院附属瑞金医院血液科,上海 200025)

慢性粒细胞白血病(chronic myeloid leukemia,CML)是一种造血干细胞克隆增殖性疾病。95%以上的CML患者可检测到特征性的费城(Ph)染色体和bcr-abl融合基因。该融合基因编码一种具有酪氨酸激酶活性的蛋白,通过一系列复杂的细胞信号转导途径,使造血干细胞发生异常转化而导致CML的发生[1]。伊马替尼是治疗CML的一线药物,但随着伊马替尼的临床应用范围的扩大和时间的推移,耐药现象逐渐显现。

1 CML发病机制

95%以上的CML患者体内可检测到异常的Ph染色体,它是由9号染色体和22号染色体的长臂相互易位构成[t(9;22)(q34;q11)]。这种易位使位于9号染色体长臂(9q34)上的原癌基因abl和位于22号染色体长臂(22q11)上的bcr基因重新组合,从而形成bcr-abl融合基因。形成融合基因时,abl基因的断裂点较固定,而bcr基因的断裂点不一,常集中在m-bcr、M-bcr和μ-bcr 3个区域[2]。从而产生不同形式的bcr-abl融合基因,进而表达分子质量为190 kD、210 kD、230 kD的融合蛋白P190、P210、P230。P190主要见于急性淋巴细胞白血病(acute lymphoblastic leukemia,ALL),P230主要见于慢性中性粒细胞白血病(chronic neutrophilic leukemia,CNL),P210主要见于CML。CML相关的bcr基因断裂点常位于M-bcr,形成的融合基因转录产物为b2a2或b3a2,进而表达融合蛋白P210[3]。P210融合蛋白在CML的发病中起关键作用,它具有异常增强的酪氨酸激酶活性,与三磷酸腺苷(ATP)结合后激活Ras/MAPK、PI3K/Akt、STAT5等通路,导致细胞恶性增生、凋亡障碍,使骨髓基质细胞黏性下降,造成造血干细胞的恶性转化,进而导致CML的发生[4]。

2 伊马替尼作用机制

伊马替尼是人工合成的酪氨酸激酶抑制剂,用于治疗Ph染色体阳性的CML急性期、加速期或α-干扰素治疗失败的慢性期患者。目前,伊马替尼已成为治疗CML的一线药物,它通过竞争性抑制ATP与酪氨酸激酶催化中心的结合,阻断酪氨酸激酶的活化,进而干扰CML细胞生存,达到治疗的目的[5-6]。

3 伊马替尼的耐药机制

伊马替尼的耐药特点呈现多样化,常见的有以下几种:(1)一些新诊断CML的患者对伊马替尼不敏感,不能达到完全血液学缓解,另外,20%~25%患者不能达到完全细胞遗传学缓解[7];(2)95%以上的CML患者应用伊马替尼后,虽然已经获得完全细胞遗传学缓解,但体内仍残留BCR-ABL阳性的细胞[8],这些细胞对伊马替尼耐药,成为疾病恶化的诱因;(3)20%~25%的CML患者,起初对伊马替尼敏感,但在治疗过程中会很快产生耐药;(4)伊马替尼对大部分CML慢性期患者有效,但对加速期和急性期患者不敏感,容易出现耐药[9]。伊马替尼的耐药机制可分为BCR-ABL依赖的耐药机制和BCR-ABL非依赖的耐药机制。

3.1 BCR-ABL依赖的耐药机制

3.1.1 点突变 BCR-ABL点突变是伊马替尼耐药的主要机制,约50%耐药患者可检测到点突变[10-11]。迄今为止,已发现90多个不同的点突变与伊马替尼耐药有关[12-13]。突变的BCR-ABL激酶由于氨基酸发生改变,引起激酶结构的改变,直接阻断或间接干扰了伊马替尼与BCR-ABL激酶的结合,从而导致耐药的产生[14]。根据BCR-ABL激酶空间结构,点突变可以发生在以下位置:ATP结合环(P-环,第244~255个氨基酸残基)、激活环(A-环,第381~402个氨基酸残基)、催化域(第350~363个氨基酸残基)、直接与伊马替尼结合的残基[15]。BCR-ABL突变影响CML患者对伊马替尼的敏感性,且不同的突变类型和位置引起的耐药程度不同[16-18]。其中,T315I突变和P-环突变是最常见的突变[11,19],占所有突变类型的85%。T315I突变是第1个被报道的ABL激酶点突变[20]。BCR-ABL激酶第315位的苏氨酸(T)通过氢键直接与伊马替尼结合,然而,当苏氨酸突变为异亮氨酸(I)时,异亮氨酸由于缺乏氢键而不能与伊马替尼结合[21],同时异亮氨酸庞大的体积增加了伊马替尼的空间位阻[22],从而阻断了伊马替尼与BCR-ABL激酶的结合。P-环突变主要发生于加速期和急性期的CML患者,与其他位置的突变相比,发生P-环突变的CML患者将更迅速地进展至加速期,且预后更差[18]。

3.1.2 移码突变 大多数已知的BCR-ABL突变是点突变,移码突变非常罕见。移码突变包括插入突变和缺失突变2种形式。2012年Park等[23]报告,在2例韩国CML患者中发现了1个新的插入突变,该突变是由BCR-ABL激酶域中插入35个碱基引起的(p.Cys475Tyrfs * 11)。此外,他们发现,与点突变相比,移码突变引起的耐药程度可能更严重。

针对BCR-ABL突变,第2代酪氨酸激酶抑制剂如达沙替尼、尼罗替尼应运而生。第2代酪氨酸激酶抑制剂对大部分的BCR-ABL突变有效,但是对一部分BCR-ABL突变却不敏感,尤其是T315I突变。长久以来,因为缺乏有效的治疗方法,T315I突变成为临床的难题。Cassuto等[24]证实,第3代酪氨酸激酶抑制剂帕纳替尼对所有突变类型耐药的CML细胞株均有效,尤其是T315I突变。2012年12月14日,帕纳替尼获美国FDA批准上市,为酪氨酸激酶抑制剂耐药的CML患者带来了福音。

3.1.3 BCR-ABL蛋白高表达 BCR-ABL高表达的发生机制仍不明确。Gorre等[20]发现,11例获得性耐药患者中有3例体内可检测到bcr-abl基因的扩增。但是,在一些耐药的患者中,虽然BCR-ABL蛋白是高表达的,却未发现bcr-abl基因扩增,说明除了bcr-abl基因扩增外,BCR-ABL高表达可能还与其他机制有关[25-26]。此外,Barnes等[27]发现,CD34+的CML细胞中BCR-ABL表达水平的不同可能使其对伊马替尼反应的程度与持续时间不同,如在加速期BCR-ABL表达相对较高的细胞可较快出现伊马替尼耐药;研究[28-29]发现,伊马替尼无法彻底清除原始细胞(lin-CD34+CD38-),可能与BCR-ABL蛋白在这些细胞中表达水平较高有关。Kumari等[30]发现,BCR-ABL的高表达能催化BCR-ABL突变和伊马替尼耐药的发生。

3.2 BCR-ABL非依赖的耐药机制

3.2.1 药物流入和流出 可能与伊马替尼耐药有关的外排性转运蛋白主要包括P-糖蛋白(P-glycoprotein,P-gp;也称ATP binding cassette B1,ABCB1)、多药耐药相关蛋白-1(multidrug resistance-associated protein 1,MRP1;也称ATP binding cassette C1,ABCC1)和乳腺癌耐药蛋白(breast cancer resistance protein,BCRP,也称ATP binding cassette G2,ABCG2)。伊马替尼耐药相关的摄入性转运蛋白主要为人有机阳离子转运体1(human organic cation transporter 1,hOCT-1)。

伊马替尼耐药相关的药物转运蛋白中研究较多的是P-gp。P-gp是由多药耐药基因MDR1编码的一种跨膜糖蛋白,它消耗ATP的同时将胞内亲脂性的药物泵出细胞,通过降低胞内药物浓度而导致耐药的发生。Mahon等[25]首次报告,伊马替尼的耐药与P-gp的高表达有关。但是,Hatziieremia等[31]发现,P-gp介导的耐药在CD34+的CML祖细胞中不明显。Deenik等[32]发现,接受高剂量伊马替尼治疗的CML患者产生的耐药与MDR1的基因多态性有关,表明伊马替尼的耐药与P-gp有关。

MRP1也是一类跨膜糖蛋白,它需通过消耗ATP与谷胱甘肽(glutathione,GSH)结合,将带负电的药物逆浓度梯度泵出细胞,降低细胞内药物浓度,从而导致耐药。然而,也有学者持相反意见,如Mukai等[33]和White等[34]认为,伊马替尼不是MRP1的底物,伊马替尼耐药与MRP1无关。

ABCG2首先从乳腺癌细胞中被发现,故又称为BCRP。近年来研究发现,它在多药耐药方面起着不可忽视的作用。然而,对于伊马替尼是ABCG2的底物还是抑制物,目前仍有争议[35-36]。Nakanishi等[37]使表达BCR-ABL蛋白的CML细胞系K562细胞选择性表达ABCG2,形成细胞系(K562/BCRP-MX10),发现ABCG2可以保护BCR-ABL阳性的细胞免受伊马替尼的杀伤;他们随后发现,BCR-ABL蛋白通过激活PI3K-Akt通路上调ABCG2的表达,而伊马替尼则通过抑制BCR-ABL蛋白的活性下调ABCG2的表达。但是, 该实验是在人工导入ABCG2的基础上进行的,而内源性的ABCG2是否在CML细胞中具有以上作用仍待进一步研究。

hOCT-1是与伊马替尼耐药相关的摄入性转运蛋白。Thomas等[38]认为,伊马替尼通过hOCT1转运到细胞内。White等[34]也认为,hOCT1介导的伊马替尼可进入细胞。Wang等[39]认为,hOCT1表达的减少可能和伊马替尼的临床效应不佳有关。

虽然已有大量药物转运蛋白的研究,但关于它们在伊马替尼的耐药机制中发挥的作用仍有争议,仍需进行进一步的研究。

3.2.2 SIRT1去乙酰化增多 哺乳动物SIRT1是酵母沉默信息调节因子Sir2(silence information regulator 2)的同源物,是一种烟酰胺腺嘌呤二核苷酸(nicotinamide adenine dinucleotide,NAD)依赖的蛋白去乙酰基酶[40]。作为代谢应激感受因子,在细胞遭受代谢、氧化和毒性应激时,SIRT1通过将P53[41-42],Ku70[43]和FOXO[44]蛋白等多种底物去乙酰化,维持细胞的存活。许多研究[45-48]表明,在原发性实体瘤和血液恶性肿瘤中,SIRT1的表达增多。然而,SIRT1激活在造血祖细胞的恶性转化和CML发展中的作用仍不清楚。Wang等[49]发现,SIRT1在CML细胞株KCL-22和K562中表达明显增加。随后,Yuan等[50]证实,BCR-ABL可以在转录水平激活SIRT1。伊马替尼可以通过抑制BCR-ABL而部分减少SIRT1的表达,进而增强CML细胞对伊马替尼的敏感性。敲除SIRT1基因并联合应用伊马替尼可以延长CML小鼠模型的生存期。Wang等[51]证明,抑制SIRT1的去乙酰化或敲除SIRT1基因可以阻断应用酪氨酸激酶抑制剂导致的BCR-ABL获得性突变以及CML复发。以上研究表明,SIRT1可能成为克服伊马替尼耐药的潜在治疗靶点。

3.2.3 SK-1/S1P表达的增加 鞘磷脂(sphingomyelin)是膜脂质的一个家族,包括神经酰胺(ceramide,Cer)、鞘氨醇(sphingosine,Sph)和1-磷酸鞘氨醇(sphingosine 1-phosphate,S1P)等,对调节脂质双分子层的流动性和结构具有重要作用[52]。这些分子在细胞增殖、凋亡、转移和衰老及炎性反应中发挥了必要作用[53-55]。Cer发挥促细胞凋亡的作用,而S1P则促进细胞增殖或抗凋亡。Cer可被神经酰胺酶水解成鞘氨醇(Sph),在鞘氨醇激酶(sphingosine kinase,SK)中的SK-1或SK-2的作用下,Sph被磷酸化,得到S1P[56]。Baran等[57]报告,在K562细胞株中,SK-1介导的Cer和S1P平衡的改变导致了伊马替尼的耐药,但机制尚不明确。Salas等[58]证明,SK-1/S1P通过抑制伊马替尼耐药细胞株中蛋白酶体对BCR-ABL的降解,加强BCR-ABL蛋白的稳定性;相反,敲除SK-1则可明显降低耐药细胞株BCR-ABL的稳定性。

3.2.4 Twist1基因表达增多 Twist1基因是碱性螺旋-环-螺旋转录因子的重要成员,它作为转录因子参与胚胎的形成、未分化细胞的增殖和细胞的存活[59-61]。许多研究表明,Twist1作为重要的癌基因,在表皮-间叶细胞转换(epithelial-mesenchymal transition,EMT)过程中起重要作用,参与多种实体肿瘤的发生和发展过程,但其在造血系统疾病中的作用仍不明确。Cosset等[62]认为,Twist1基因可能参与CML的发生发展过程及伊马替尼的耐药。他们发现在CML活动期的患者中,Twist1基因是上调的;酪氨酸激酶抑制剂能下调Twist1基因的水平,而在酪氨酸激酶抑制剂耐药的患者中,Twist1基因是上调的。有关Twist1基因在CML中的作用以及与酪氨酸激酶抑制剂耐药关系,尚有待进一步研究。

综上所述,伊马替尼的出现为CML的治疗及改善患者预后提供了希望,但随着临床应用的推广,其耐药现象不断显现。了解伊马替尼耐药的机制有助于制定合理的治疗方案,从而进一步提高CML患者的生存率和生存质量。伊马替尼的耐药机制非常复杂,不仅涉及BCR-ABL蛋白的突变及表达水平改变等BCR-ABL依赖的耐药机制,还包括多种非BCR-ABL依赖的耐药机制。虽然在伊马替尼的耐药机制研究方面已取得很大的进步,但仍未被完全阐明,且多种耐药机制之间的相互作用亦不明确。靶向多种耐药位点可能成为克服伊马替尼耐药的新方向。

[1]Goldman JM,Melo JV.Chronic myeloid leukemia--advances in biology and new approaches to treatment[J].N Engl J Med,2003,349(15):1451-1464.

[2]Faderl S,Talpaz M,Estrov Z,et al.The biology of chronic myeloid leukemia[J]. N Engl J Med,1999,341(3):164-172.

[3]Faderl S,Hochhaus A,Hughes T.Monitoring of minimal residual disease in chronic myeloid leukemia[J].Hematol Oncol Clin North Am,2004, 18(3):657-670,ix-x.

[4]Alvarez RH,Kantarjian H,Cortes JE.The biology of chronic myelogenous leukemia:implications for imatinib therapy[J].Semin Hematol,2007,44(1 Suppl 1):S4-S14.

[5]Druker BJ,Talpaz M,Resta DJ,et al.Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia[J].N Engl J Med, 2001,344(14):1031-1037.

[6]Cohen MH,Williams G,Johnson JR,et al.Approval summary for imatinib mesylate capsules in the treatment of chronic myelogenous leukemia[J].Clin Cancer Res,2002,8(5):935-942.

[7]O′Brien SG,Guilhot F,Larson RA,et al.Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia[J].N Engl J Med,2003,348(11):994-1004.

[8]Hughes TP,Kaeda J,Branford S,et al.Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia[J].N Engl J Med,2003,349(15):1423-1432.

[9]Apperley JF.Part I:mechanisms of resistance to imatinib in chronic myeloid leukaemia[J].Lancet Oncol,2007,8(11):1018-1029.

[10]Branford S,Rudzki Z,Walsh S,et al.Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance,and mutations in the ATP phosphate-binding loop(P-loop) are associated with a poor prognosis[J].Blood,2003,102(1):276-283.

[11]Hochhaus A,Kreil S,Corbin AS,et al.Molecular and chromosomal mechanisms of resistance to imatinib (STI571) therapy[J].Leukemia,2002, 16(11):2190-2196.

[12]Soverini S,Hochhaus A,Nicolini FE,et al.BCR-ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors:recommendations from an expert panel on behalf of European LeukemiaNet[J].Blood,2011,118(5):1208-1215.

[13]Soverini S,Martinelli G,Amabile M,et al.Denaturing-HPLC-based assay for detection of ABL mutations in chronic myeloid leukemia patients resistant to Imatinib[J].Clin Chem,2004,50(7):1205-1213.

[14]An X,Tiwari AK,Sun Y,et al.BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia:a review[J].Leuk Res,2010,34(10):1255-1268.

[15]Jabbour E,Parikh SA,Kantarjian H,et al.Chronic myeloid leukemia:mechanisms of resistance and treatment[J].Hematol Oncol Clin North Am,2011,25(5):981-995.

[16]Soverini S,Colarossi S,Gnani A,et al.Contribution of ABL kinase domain mutations to imatinib resistance in different subsets of Philadelphia-positive patients:by the GIMEMA Working Party on Chronic Myeloid Leukemia[J]. Clin Cancer Res,2006,12(24):7374-7379.

[17]Kantarjian HM,Talpaz M,O′Brien S,et al.Dose escalation of imatinib mesylate can overcome resistance to standard-dose therapy in patients with chronic myelogenous leukemia[J].Blood,2003,101(2):473-475.

[18]Nicolini FE,Corm S,Lê QH,et al.Mutation status and clinical outcome of 89 imatinib mesylate-resistant chronic myelogenous leukemia patients:a retrospective analysis from the French intergroup of CML (Fi(phi)-LMC GROUP)[J].Leukemia,2006,20(6):1061-1066.

[19]Quintás-Cardama A,Kantarjian H,Cortes J.Flying under the radar:the new wave of BCR-ABL inhibitors[J].Nat Rev Drug Discov,2007,6(10):834-848.

[20]Gorre ME,Mohammed M,Ellwood K,et al.Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification[J].Science, 2001,293(5531):876-880.

[21]Shah NP,Nicoll JM,Nagar B,et al.Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia[J]. Cancer Cell,2002,2(2):117-125.

[22]Hochhaus A,La Rosée P.Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance[J].Leukemia,2004, 18(8):1321-1331.

[23]Park SH,Chi HS,Kwon MR,et al.Rare frameshift mutation Cys475Tyrfs(*)11 in the BCR/ABL kinase domain contributes to imatinib mesylate resistance in 2 Korean patients with chronic myelogenous leukemia[J].Ann Lab Med,2012, 32(6):452-454.

[24]Cassuto O,Dufies M,Jacquel A,et al.All tyrosine kinase inhibitor-resistant chronic myelogenous cells are highly sensitive to ponatinib[J].Oncotarget, 2012,3(12):1557-1565.

[25]Mahon FX,Deininger MW,Schultheis B,et al.Selection and characterization of BCR-ABL positive cell lines with differential sensitivity to the tyrosine kinase inhibitor STI571:diverse mechanisms of resistance[J].Blood,2000, 96(3):1070-1079.

[26]le Coutre P,Tassi E,Varella-Garcia M,et al.Induction of resistance to the Abelson inhibitor STI571 in human leukemic cells through gene amplification[J].Blood,2000,95(5):1758-1766.

[27]Barnes DJ,Palaiologou D,Panousopoulou E,et al.Bcr-Abl expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia[J].Cancer Res,2005,65(19):8912-8919.

[28]Jiang X,Zhao Y,Smith C,et al.Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies[J]. Leukemia,2007,21(5):926-935.

[29]Jiang X,Saw KM,Eaves A,et al.Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells[J].J Natl Cancer Inst,2007, 99(9):680-693.

[30]Kumari A,Brendel C,Hochhaus A,et al.Low BCR-ABL expression levels in hematopoietic precursor cells enable persistence of chronic myeloid leukemia under imatinib[J].Blood,2012,119(2):530-539.

[31]Hatziieremia S,Jordanides NE,Holyoake TL,et al.Inhibition of MDR1 does not sensitize primitive chronic myeloid leukemia CD34+ cells to imatinib[J]. Exp Hematol,2009,37(6):692-700.

[32]Deenik W,van der Holt B,Janssen JJ,et al.Polymorphisms in the multidrug resistance gene MDR1 (ABCB1) predict for molecular resistance in patients with newly diagnosed chronic myeloid leukemia receiving high-dose imatinib[J].Blood,2010,116(26):6144-6145;author reply 6145-6146.

[33]Mukai M,Che XF,Furukawa T,et al.Reversal of the resistance to STI571 in human chronic myelogenous leukemia K562 cells[J].Cancer Sci,2003, 94(6):557-563.

[34]White DL,Saunders VA,Dang P,et al.OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib[J]. Blood,2006,108(2):697-704.

[35]Burger H,van Tol H,Boersma AW,et al.Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump[J]. Blood,2004,104(9):2940-2942.

[36]Houghton PJ,Germain GS,Harwood FC,et al.Imatinib mesylate is a potent inhibitor of the ABCG2(BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro[J].Cancer Res,2004,64(7):2333-2337.

[37]Nakanishi T,Shiozawa K,Hassel BA,et al.Complex interaction of BCRP/ABCG2 and imatinib in BCR-ABL-expressing cells:BCRP-mediated resistance to imatinib is attenuated by imatinib-induced reduction of BCRP expression[J].Blood,2006,108(2):678-684.

[38]Thomas J,Wang L,Clark RE,et al.Active transport of imatinib into and out of cells:implications for drug resistance[J].Blood,2004,104(12):3739-3745.

[39]Wang L,Giannoudis A,Lane S,et al.Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia[J].Clin Pharmacol Ther,2008,83(2):258-264.

[40]Guarente L.Sirtuins in aging and disease[J].Cold Spring Harb Symp Quant Biol,2007,72:483-488.

[41]Luo J,Nikolaev AY,Imai S,et al.Negative control of p53 by Sir2alpha promotes cell survival under stress[J].Cell,2001,107(2):137-148.

[42]Vaziri H,Dessain SK,Ng Eaton E,et al.hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase[J].Cell,2001,107(2):149-159.

[43]Cohen HY,Miller C,Bitterman KJ,et al.Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase[J].Science,2004, 305(5682):390-392.

[44]Brunet A,Sweeney LB,Sturgill JF,et al.Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase[J].Science,2004, 303(5666):2011-2015.

[45]Huffman DM,Grizzle WE,Bamman MM,et al.SIRT1 is significantly elevated in mouse and human prostate cancer[J].Cancer Res,2007, 67(14):6612-6618.

[46]Bradbury CA,Khanim FL,Hayden R,et al.Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors[J].Leukemia,2005, 19(10):1751-1759.

[47]Jang KY,Hwang SH,Kwon KS,et al.SIRT1 expression is associated with poor prognosis of diffuse large B-cell lymphoma[J].Am J Surg Pathol,2008, 32(10):1523-1531.

[48]Nosho K,Shima K,Irahara N,et al.SIRT1 histone deacetylase expression is associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer[J].Mod Pathol,2009,22(7):922-932.

[49]Wang B,Hasan MK,Alvarado E,et al.NAMPT overexpression in prostate cancer and its contribution to tumor cell survival and stress response[J]. Oncogene,2011,30(8):907-921.

[50]Yuan H,Wang Z,Li L,et al.Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis[J].Blood,2012,119(8):1904-1914.

[51]Wang Z,Yuan H,Roth M,et al.SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells[J].Oncogene,2013,32(5):589-598.

[52]Ogretmen B,Hannun YA.Biologically active sphingolipids in cancer pathogenesis and treatment[J].Nat Rev Cancer,2004,4(8):604-616.

[53]Hannun YA,Obeid LM.The Ceramide-centric universe of lipid-mediated cell regulation:stress encounters of the lipid kind[J].J Biol Chem,2002, 277(29):25847-25850.

[54]Merrill AH Jr,Schmelz EM,Dillehay DL,et al.Sphingolipids-the enigmatic lipid class:biochemistry,physiology,and pathophysiology[J].Toxicol Appl Pharmacol,1997,142(1):208-225.

[55]Futerman AH,Hannun YA.The complex life of simple sphingolipids[J]. EMBO Rep,2004,5(8):777-782.

[56]Hla T.Physiological and pathological actions of sphingosine 1-phosphate[J]. Semin Cell Dev Biol,2004,15(5):513-520.

[57]Baran Y,Salas A,Senkal CE,et al.Alterations of ceramide/sphingosine 1-phosphate rheostat involved in the regulation of resistance to imatinib-induced apoptosis in K562 human chronic myeloid leukemia cells[J].J Biol Chem, 2007,282(15):10922-10934.

[58]Salas A,Ponnusamy S,Senkal CE,et al.Sphingosine kinase-1 and sphingosine 1-phosphate receptor 2 mediate Bcr-Abl1 stability and drug resistance by modulation of protein phosphatase 2A[J].Blood,2011,117(22):5941-5952.

[59]Sakatani T,Kaneda A,Iacobuzio-Donahue CA,et al.Loss of imprinting of Igf2 alters intestinal maturation and tumorigenesis in mice[J].Science,2005, 307(5717):1976-1978.

[60]Puisieux A,Valsesia-Wittmann S,Ansieau S.A twist for survival and cancer progression[J].Br J Cancer,2006,94(1):13-17.

[61]Valsesia-Wittmann S,Magdeleine M,Dupasquier S,et al.Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells[J].Cancer Cell,2004,6(6):625-630.

[62]Cosset E,Hamdan G,Jeanpierre S,et al.Deregulation of TWIST-1 in the CD34+ compartment represents a novel prognostic factor in chronic myeloid leukemia[J].Blood,2011,117(5):1673-1676.

猜你喜欢
伊马替尼酪氨酸激酶
GDM孕妇网膜脂肪组织中Chemerin的表达与IRS-1及其酪氨酸磷酸化分析
祛白胶囊联合脾氨肽治疗对白癜风患者IL-10、IL-17、酪氨酸酶IgG的影响
蚓激酶对UUO大鼠肾组织NOX4、FAK、Src的影响
四氢嘧啶对酪氨酸酶的抑制作用机制及类型※
蚓激酶的药理作用研究进展
慢性粒细胞白血病患者临床治疗分析
胃腺癌中Aurora激酶-A、-B表达及其与细胞增殖的相关性
伊马替尼合干扰素—α治疗慢性髓细胞性白血病不良反应22例临床观察
吃酱油伤疤会变黑?
伊马替尼治疗慢性粒细胞白血病患者的安全性和疗效探讨