孙丕训 潘欣桐
在我们研究一个数学问题本质或探索某问题的内在规律时,适当地对题目条件进行弱化是一种非常有效的方法.本文从2021年朝阳区二模解析几何解答题出发,将其条件进行适当弱化,得到该问题背后的规律,并将得到的规律推广到双曲线中.
猜想1 已知圆锥曲线C:mx2+ny2=1(mn≠0),直线l经过定点B(x0,y0)且与曲线C交于不同的两点M,N.E(s,t)是过点B且與直线mx0x+ny0y=1垂直的直线上的定点.设直线EM,EN分别与直线mx0x+ny0y=1交于两点P,Q,线段MN,PQ的中点分别为G,H,则直线GH必过定点.
猜想2 已知抛物线C:y2=2px(p>0),直线l经过定点B(x0,y0)且与曲线C交于不同的两点M,N.D(s,t)是过点B且与直线y0y=p(x+x0)垂直的直线上的定点.设直线EM,EN分别与直线y0y=p(x+x0)交于两点P,Q,线段MN,PQ的中点分别为G,H,则直线GH必过定点.