摘 要:文首的題目(1)是网络、杂志中频繁出现的一类解三角形中的最值问题的一般情形,其逆问题也值得研究.文章给出了这一对解三角形中的最值问题的完整解答,其中建系解法新颖简洁.
关键词:解三角形;最值;逆问题;解答
中图分类号:G632文献标识码:A文章编号:1008-0333(2020)22-0007-02
题目 设△ABC的三边长分别是a,b,c,p,q,r均是已知数且q+r>0,pq+pr+qr>0.
(1)若pa2+qb2+rc2=s,则△ABC面积的最大值为;
(2)若△ABC的面积是S,则pa2+qb2+rc2的最小值为.
解法1 设△ABC的长为c的边所对的角是C.由q+r>0,pq+pr+qr>0,可得(p+r)(q+r)=pq+pr+qr+r2>r2≥0,p+r>0.
(1)s4pq+pr+qr.设△ABC的面积为S,由S=12absinC,可得2ab=4SsinC.
由余弦定理及均值不等式,可得
s=pa2+qb2+rc2=pa2+qb2+r(a2+b2-2abcosC)
=(p+r)a2+(q+r)b2-2abrcosC≥2ab[(p+q)(q+r)-rcosC]
(当且仅当(p+r)a2=(q+r)b2时取等号),
所以s≥4SsinC[(p+q)(q+r)-rcosC],
ssinC+4rScosC≥4S(p+q)(q+r).
又因为s2+16r2S2≥ssinC+4rScosC(当且仅当
scosC=4rsinC(C是锐角)时取等号).
所以s2+16r2S2≥4S(p+q)(q+r)
S≤s4pq+pr+qr
还可得当且仅当(p+r)a2=(q+r)b2,scosC=4rSsinC(C是锐角)pa2+qb2+rc2=s
时,Smax=s4pq+pr+qr.
即当且仅当(p+r)a2=(q+r)b2,s·a2+b2-c22ab=4r·s4pq+pr+qrsinC(C是锐角),pa2+qb2+rc2=s,也即
(p+r)a2=(q+r)b2,a2+b2-c22ab=rpq+pr+qrsinC(C是锐角),pa2+qb2+rc2=s,
(p+r)a2=(q+r)b2(a2+b2-c22ab)2
=r2pq+qr+rp
[1-(a2+b2-c22ab)2](a+b2+c2),
(p+r)a2=(q+r)b2,a2+b2-c22ab=rpq+pr+qr,pa2+qb2+rc2=s,
(a,b,c)=(s(q+r)2(pq+pr+qr),s(p+r)2(pq+pr+qr),s(p+q)2(pq+pr+qr))
时,Smax=s4pq+pr+qr.
(2)4Spq+pr+qr.设s=pa2+qb2+rc2.同(1)的解答,可得
s≥4SsinC[(p+r)(q+r)-rcosC]
(当且仅当(p+r)a2=(q+r)b2时取等号),
ssinC+4rScosC≥4S(p+r)(q+r).
又因为s2+16r2S2≥ssinC+4rScosC(当且仅当scosC=4rScosC(C是锐角)时取等号),
所以s2+16r2S2≥4S(p+r)(q+r),
s≥4Spq+pr+qr.
还可得当且仅当
(p+r)a2=(q+r)b2,4Spq+pr+qrcosC=4rSsinC(C是锐角)pa2+qb2+rc2=4Spq+pr+qr,时,
smin=4Spq+pr+qr.
即当且仅当
(p+r)a2=(q+r)b2,(pq+pr+qr)cos2C=r2(1-cos2C)(C是锐角),pa2+qb2+rc2=4Spq+pr+qr,也即
(p+r)a2=(q+r)b2,a2+b2-c22ab=r(p+r)(q+r),pa2+qb2+rc2=4Spq+pr+qr,
(a,b,c)=2S(q+r)pq+pr+qr,2S(p+r)pq+pr+qr,2S(p+q)pq+pr+qr时,smin=4Spq+pr+qr.
解法2 设BC=a,CA=b,AB=c,△ABC的面积为S.
可如图1所示建立平面直角坐标系xBy,并可设A(x1,y1)(y1>0),C(x2,0)(x2>0),得S=12x2y1,x2y1=2S.
(1)s4pq+pr+qr.
由两点间距离公式,可得
s=pa2+qb2+rc2=px22+q[(x1-x2)2+y21]+r(x21+y21)
=(q+r)x1-qq+rx22+pq+pr+qrq+rx22+(q+r)y21
≥pq+pr+qrq+rx22+(q+r)y21≥2pq+pr+qrx2y1=4Spq+pr+qr
所以S≤s4pq+pr+qr,当且仅当
x1=qq+rx2,pq+pr+qrq+rx22=(q+r)y21(x2>0),12x2y1=s4pq+pr+qr,
即x1=qs2(q+r)(pq+pr+qr),x2=s(q+r)2(pq+pr+qr),y1=s2(q+r),
也即a=s(q+r)2(pq+pr+qr),b=s(p+r)2(pq+pr+qr),c=s(p+q)2(pq+pr+qr)时,Smax=s4pq+pr+qr.
(2)4Spq+pr+qr.设s=pa2+qb2+rc2.同(1)的解答,可得s≥4Spq+pr+qr,所以当且仅当x1=qq+rx2,pq+pr+qrq+rx22=(q+r)y21(x2>0),x2y1=2S,
即x1=q2S(q+r)pq+pr+qr,x2=2S(q+r)pq+pr+qr,y1=2Spq+pr+qrq+r,
也即a=2S(q+r)pq+pr+qr,b=2S(p+r)pq+pr+qr,c=2S(p+q)pq+pr+qr,时,smin=4Spq+pr+qr.
参考文献:
[1]甘志国.例谈用三角换元法解题[J].数理化学习(高中版),2018(11):6-9.
[责任编辑:李 璟]