一类线性微分方程的指数增长型伪概自守温和解

2020-05-21 03:31姚慧丽郭洺君王晶囡宋晓秋
哈尔滨理工大学学报 2020年1期
关键词:微分方程

姚慧丽 郭洺君 王晶囡 宋晓秋

摘 要:微分方程是基于解决各种实际问题而建立的一种数学模型,对微分方程的一个主要研究方向是各种解的存在性问题。伪概自守函数是比概自守函数、渐近概自守函数更广的函数。本文将探讨一类指数增长型的伪概自守函数在一类线性微分方程中的应用,利用C0-半群以及这类函数的有关理论,研究此类型方程指数增长型的伪概自守温和解的存在问题以及唯一问题。

关键词:微分方程;伪概自守温和解; 指数增长型;C0-半群

DOI:10.15938/j.jhust.2020.01.021

中图分类号: O175

文献标志码: A

文章编号: 1007-2683(2020)01-0140-04

Abstract:Differential equations are a kind of mathematical models which have been established to solve all kinds of practical problemsThe existence problems of various solutions for differential equations are a main research directionPseudo almost automorphic functions are more wide functions than almost automorphic functions and asymptotically almost automorphic functions-The applications of exponentiauy type pseudo almost automorphic f unctions on a class of linear differential equations will be investigated, the existence problems and uniqueness problems of exponentiauy type pseudo almost automorphic mild solution of this type equations are researched by using some related theories of C0-semigroup and this type i functions in this paper-

Keywords:differential equations; pseudo almost automorphic mild solution; exponentiauy type; C0-semigroup

0 引 言

各种方程的概周期型解已被数学工作者进行了研究,如文[1-5]。1962年,S-Bochner将刻画概周期函数定义的条件变弱,给出了更广的一类函数的定义,即概自守函数[6]。G-M-NGuerekata又先后对概自守和渐近概自守函数做了系统研究总结[7-8]。随后,梁进等人定义了伪概自守函数[9],且包含关系为

{概自守函数}{渐近概自守函数}{伪概自守函数}

这三类函数统称为概自守型函数。自此型函数理论建立以来,很多文献对各类微分方程的这种型的解存在问题进行了探讨[10-15]。特别近几年来,概自守型函数被学者们应用到了各种随机微分方程中,探究了这些方程的概自守型解的存在问题[16-20]。下列方程

参 考 文 献:

[1] 姚慧丽,颜荣.一类差分方程的渐近概周期序列解的存在性[J].哈尔滨理工大学学报,2010,15(6):59.

YAO Huili, YAN Rong. Existence of Asymptotic Almost Periodic Sequence Solution of a Difference Equation[J]. Journal of Harbin University of Science and Technology. 2010, 15(6): 59.

[2] YOSHIHIRO HAMAYA. Bifurcation of Almost Periodic Solutions in Difference Equations[J]. Journal of Difference Equations and Applications, 2004, 10(3): 257.

[3] 許广涛,姚慧丽.一类时滞积分方程的渐近概周期解的存在性[J].哈尔滨理工大学学报,2008,13(1):106.

XU Guangtao, YAO Huil. Existence of Asymptotically Almost Periodic Solution in a Certain Delay Integral Equation[J]. Journal of Harbin University of Science and Technology. 2008, 13(1): 106.

[4] DIAGANA T. Weighted Pseudo Almost Periodic Solutions to Some Differential Equations[J]. Nonlinear Anal. Theory Methods Appl, 2008, 68: 2250.

[5] 庄荣坤, 吴洪武, 张留伟. 一类三阶逐段常变量微分方程渐近概周期解[J]. 高校应用数学学报,2012,27(2):157.

ZHUANG Rongkun, WU Hongwu, ZAHNG Liuwei. Asymptotic Almost Periodic Solutions of Third-order Neutral Differential Equations with Piecewise Constant Argument[J]. Applied Mathematics A Journal of Chinese Universities. 2012, 27(2): 157.

[6] BOCHNER S. A New Approach to Almost-periodicity[J]. Proc. Nat. Acad. Sci. USA ,1962,48:2039.

[7] NGUEREKATA G M. Almost Automorphic Functions and Amost Periodic Functions in Abstract Spaces[M]. K1uwer Academic/Plnum Publishers,New York-Bedin-Moscow,2001.

[8] DIAGANA T, NGUEREKATA G M. Amost Automorphic Solutions to Some Classes of Partial Evolution Equations[J]. Appl.Math.Lett.,2007,20(4):462.

[9] LIANG Jin, ZHANG Jun and XIAO TiJun. Composition of Pseudo Almost Automorphic and Asymptotically Amost Automorphic Functions[J]. Math.Anal.Appl. 2008, 340(2):1493.

[10]SONG Xiaoqiu. Almost Automorphic and Pseudo Almost Automorphic Solutions of Semilinear Differential Equations[J]. Acta Analysis Functionalis Applicata, 2009, 11(4) :52.

[11]GISELE M M,GASTON M N. Almost Automorphic Solutions of Neutral Functional Differential Equations[J]. Electronic Journal of Differential Equation, 2010(69):1.

[12]张蕊,常永奎,NGUEREKATA G M.非自治中立型无穷时滞泛函微分方程的加权伪概自守解[J].中国科学:数学,2013,43(3):273.

ZHANG Rui, CHANG Yongkui, NGUEREKATA G M. Weighted Pseudo Almost Automorphic Solutions for Non-Autonomous Neutral Functional Difffferential Equations with Infifinite Delay[J]. Scientia Sinica(Mathematica). 2013, 43(3): 273.

[13]刘敬怀,宋晓秋,陆凤玲.半线性微分方程的概自守与伪概自守解[J].应用泛函分析学报,2009,11(4):294.

LIU Jinghuai, SONG Xiaoqiu, LIU Fengling. Almost Automorphic and Pseudo Almost Automorphic Solutions of Semilinear Diff erential Equations[J]. Acta Analysis Functionalis Applicata. 2009, 11(4): 294.

[14]肖体俊,梁进,张俊.伪概自守函数及在发展方程中的应用[J]. 中国科学技术大学学报,2009(45):64.

XIAO Tijun, LIANG Jin, ZHANG Jun. Pseudo Almost Automorphic Functions and Applications to Evolution Equations[J]. Journal of University of Science and Technology of China. 2009, 45: 64.

[15]张荣娟,褚衍彪,宋晓秋.抽象微分方程的加权伪概自守解[J].枣庄学院学报,2010(34):45.

ZHANG Rongjuan, CHU Yanbiao, SONG Xiaoqiu. Weighted Pseudo Almost Automorphic Solutions of Abstract Integral Equation[J]. Journal of Zaozhuang University, 2010, 34: 45.

[16]DIOP M A, EZZINBI K, MBAYE M M. Existence and Global Attractiveness of a Square-mean μ-pseudo Almost Automorphic Solution for Some Stochastic Evolution Equation Driven by Lévy Noise[J]. Mathematische Nachrichten, 2016, 290(8/9):1260.

[17]GU Y, REN Y, SAKTHIVEL R. Square-mean Pseudo Almost Automorphic Mild Solutions for Stochastic Evolution Equations Driven by G-Brownian Motion[J]. Stochastic Analysis & Applications, 2016, 34(3):528.

[18]XI LIANG, YU LIANG, BAIFENG. Square-mean Almost Automorphic Solutions to Some Stochastic Evolution Equations I: Autonomous Case[J]. Acta Mathematica Applicatae Sinica, English Series, 2015, 31(3): 577.

(編辑:温泽宇)

猜你喜欢
微分方程
常微分方程教学的一些思考
利用函数相关性分析积分因子相关问题 
二阶常系数非齐次线性微分方程
一类特殊的微分方程求解方法研究
基于多变量微分方程模型展开的商业经济关键点研究
新型录波器单端故障定位可行性研究
血液流速的微分方程模型
浅谈高等数学教学过程中的教育思想
对利用多种时间尺度的微分方程求解方法探讨
旋转极小曲面中微分方程通解的解法