日中性草莓不同季节果实挥发性成分差异

2019-07-29 03:24董静钟传飞王桂霞常琳琳孙健孙瑞张宏力李睿隗永青郑书旗张运涛
中国农业科学 2019年13期
关键词:萜烯芳樟醇己酸

董静,钟传飞,王桂霞,常琳琳,孙健,孙瑞,张宏力,李睿,隗永青,郑书旗,张运涛

日中性草莓不同季节果实挥发性成分差异

董静,钟传飞,王桂霞,常琳琳,孙健,孙瑞,张宏力,李睿,隗永青,郑书旗,张运涛

(北京市林业果树科学研究院/北京市草莓工程技术研究中心/农业部华北地区园艺作物生物学与种质创新重点实验室,北京 100093)

【】比较日中性草莓秋季和冬季果实挥发性成分,明确季节变化对挥发性成分构成及香气值的影响,为研究草莓香气形成和开发利用日中性品种提供理论依据。以日中性品种‘阿尔比’‘蒙特瑞’‘波特拉’和‘圣安德瑞斯’的秋季大拱棚栽培和冬季日光温室栽培的成熟果实为试材,采用顶空固相微萃取和气谱-质谱联用方法检测挥发性成分并进行定性、定量分析,计算挥发性成分的数量、含量、比例和香气值,通过主成分分析对秋、冬果实香气成分含量差异做进一步分析,并依据香气值>1的成分,利用聚类热图对供试样品进行分类。共检测到88种挥发性成分,计算了57种成分的香气值,其中有30种成分的香气值>1。季节变化对各类挥发性成分数量和总含量的影响因品种而异;冬季果实中酯类成分的含量及在总挥发性成分中的比例显著高于秋季果实,而萜烯类成分的比例则显著低于秋季果实。主成分分析表明,‘波特拉’果实的挥发性成分含量受季节变化影响最小,而‘圣安德瑞斯’受季节影响最大。所有挥发性成分中,丁酸乙酯的平均香气值最高,对果实香气有重要影响;与秋季果实相比,冬季果实乙酸丁酯和丁酸甲酯的香气值显著升高;香气值>1的萜烯类成分在冬季果实中的香气值之和均低于秋季果实。丁酸乙酯、丁酸丁酯、4-甲氧基-2,5-二甲基-3()-呋喃酮(DMMF)、己酸乙酯、芳樟醇等成分在不同季节果实的香气差异中起重要作用。通过热图分析可以将供试样品分为3类,其中第I类样品包括‘阿尔比’秋季果实、冬季果实和‘蒙特瑞’秋季果实,它们的总香气值和丁酸乙酯香气值均高于其他样品。季节变化主要影响果实的酯类和萜烯类成分,冬季果实的酯类含量、比例显著高于秋季果实,而萜烯类的比例则显著低于秋季果实。4个品种中,‘波特拉’果实挥发性成分含量受季节影响最小,而‘阿尔比’果实香气最浓,香气受季节变化的影响最小,‘圣安德瑞斯’挥发性成分含量和香气均受影响最大。

草莓;日中性品种;果实挥发性成分构成;香气值;酯类;萜烯类

0 引言

【研究意义】浓郁香气是优质草莓的主要品质性状之一,也是消费者挑选草莓的重要依据。中国是草莓生产和消费大国,栽培方式以促成栽培为主,2015年的栽培面积已超过15万公顷、产量达到400万吨以上[1]。目前,国内草莓促成栽培采用的是短日照(Short-day)品种,主要供应冬春鲜果市场;而日中性(Day-neutral)品种的花芽分化不受日照长度限制,既可用于冷凉地区夏秋草莓生产,实现周年供应,也可以用于冬季促成栽培,向消费者提供更多选择[2-5]。生产者充分利用日中性草莓的这种特性,正尝试通过设施栽培条件将夏秋草莓生产延长至冬季,以提高经济效益,因此,需要加深对不同季节果实品质性状的了解。对日中性草莓的果实挥发性成分进行研究,分析比较秋、冬季节香气物质的差异,对草莓香气研究和日中性品种的开发利用具有重要意义。【前人研究进展】在草莓果实中已检测到360余种挥发性成分,包括酯类、萜烯类、醇类、醛类、酮类、呋喃类等,这些成分组成了复杂的混合物[6-8],其中酯类已鉴定出130多种,占总挥发性成分的25%—90%[9],是种类最多的一类成分。己酸乙酯、丁酸乙酯、丁酸甲酯、己酸甲酯、4-甲氧基-2,5-二甲基-3()-呋喃酮(DMMF)、芳樟醇等成分的含量较高,在草莓香气中起主导作用[10-14]。通常认为不同的香气物质对果实香气的贡献不同,草莓的特征香气由许多挥发物共同形成[15],不同类型的香气可能与关键香气成分在含量和相互比例方面的变化有关[8]。基因型是影响果实挥发性成分构成的主要因素,果实成熟度、气候条件、栽培方式、采后处理等因素也会使水果香气发生改变[14,16-21]。例如,凤梨草莓(×)和森林草莓()果实酯类构成存在种间差异,导致二者的香气类型不同[22];有关葡萄的研究表明,露地栽培葡萄的单萜类化合物的种类及含量均高于温室栽培,具有更浓郁的香气[18, 23]。【本研究切入点】国内日中性草莓的栽培面积不断扩大,栽培方式也从单一的夏秋避雨栽培或冬春促成栽培,开始逐渐向两者结合、延长采收期的方向发展。在主栽品种中,‘阿尔比’的果实香气最浓,‘蒙特瑞’‘圣安德瑞斯’次之,‘波特拉’香气较淡;而与冬季相比,同一品种秋季采收的果实更有“草莓味”。但目前国内未见有关日中性草莓香气的报道,国外研究也较少,而且多以春季采收的露地栽培果实为试材[24-25],尚缺乏有关季节变化对果实香气影响的系统报道。【拟解决的关键问题】以4个日中性品种在夏秋大拱棚栽培和冬季日光温室栽培的果实为试材,分析比较挥发性成分种类、构成及香气值在不同季节果实中的差异,为研究草莓香气形成和开发利用日中性品种提供理论依据。

1 材料与方法

1.1 供试品种

以‘阿尔比’‘蒙特瑞’‘波特拉’和‘圣安德瑞斯’4个日中性品种为研究对象,分别选取夏秋大拱棚避雨栽培和冬季日光温室促成栽培的果实用于挥发性成分检测。供试植株均购自拉森峡谷农业发展(北京)有限责任公司,夏秋栽培的植株于2016年4月19日定植在承德市农林科学院隆化基地的大拱棚内,生长季正常管理,9月9日取样;促成栽培的植株于2016年9月10日定植在北京市林业果树科学研究院日光温室内,2017年2月21日取样。每个品种随机选取正常成熟果实0.5 kg,3次重复,采摘后立即放入塑料方盒中,加冰袋运回实验室,-80℃条件下保存。

1.2 挥发性成分检测

委托农业部蔬菜种子质量监督检验测试中心对供试样品的挥发性成分进行定性、定量测定。

采用顶空固相微萃取法(SPME)进行样品预处理。取样前先将固相微萃取头在气相色谱进样口老化2 h,老化温度250℃。采用四分法取样打浆,将8 g匀浆迅速转入15 mL样品瓶中,加盖封口。将老化好的萃取头插入样品瓶顶空部分,35℃水浴条件下萃取25 min,然后将萃取头抽出,插入气谱-质谱联用仪(GC-MS),于250℃解吸1 min,进行GC-MS检测分析。

岛津GCMS-GC2010(Shimadzu Co.,Kyoto,Japan)气谱-质谱联用仪测定果实挥发性成分。控制条件为:毛细管柱(DB-5MS):30 m×0.25 mm;膜厚度0.25 μm;载气为氦气;流速1 mL·min-1;程序升温:40℃保持2 min,以8℃·min-1升温到220℃,保持6 min。进样口温度250℃;EI离子源电子能量70 eV,质量范围30—550 aum。

1.3 数据分析

未知化合物质谱图经计算机检索,同时于NIST library和Wiley library两个质谱库相匹配,并结合人工图谱解析及资料分析对各材料的总离子流图进行处理,采用峰面积归一化法计算各成分在总挥发物中所占比例。混标法制备标准曲线进行定量分析,有标样的直接计算含量;没有标样的根据化学结构相似、碳原子数相近的原则进行近似定量。

表1中序号为1、2、4、5、7、8、9、10、12、17、18、19、20、24、26、34、39、41、42、43、44、46、47、48、49、57、60、67、68、69、70、71、74、76、77、79、80、81、82、88的40种成分购有标样,所有标样均购自Sigma-Aldrich(St. Louis,MO,USA)。

分别利用SAS 8.01软件对数据进行统计分析、Canoco for Windows 4.5软件进行主成分分析、R语言制作聚类热图。

2 结果

2.1 检测到的果实挥发性成分

在供试的所有样品中,共检测到88种挥发性成分(表1),包括48种酯、10种萜烯、6种酮、9种醇、3种内酯、1种呋喃、7种醛、4种酸,其中酯类成分数量最多,占54.5%,是各种果味的主要来源,其次是萜烯类和醇类,分别占11.4%和10.2%,萜烯类物质多数具有花香和甜味,醇类则提供了青味和草本气息。秋季草莓果实中的挥发性成分数量为80种,冬季果实中数量略低,为73种;不同季节果实中种类差别最大的挥发性成分为酯类,有13种含量较低的酯只在一个季节的果实中检测到。乙酸己酯、乙酸-2-己烯酯、乙酸苯甲酯、丁酸甲酯、丁酸丁酯、丁酸-2-己烯酯、己酸甲酯、己酸乙酯、芳樟醇、D-柠檬烯、橙花叔醇、己醇、反式-2-己烯醇、辛醇、DMMF、反式-2-己烯醛、苯甲醛等17种成分在所有样品中都能检测到,是共有成分。其中,丁酸甲酯在所有挥发性成分中平均含量最高,而且在冬季果实中的含量均显著高于秋季,约是秋季果实的2—3倍;丁酸丁酯在冬季果实中的平均含量是秋季的3.5倍;秋季果实中芳樟醇、橙花叔醇、D-柠檬烯、反式-2-己烯醇、辛醇、DMMF的平均含量明显高于冬季果实,而己醇、苯甲醛的含量均显著高于冬季果实。

2.2 果实挥发性成分构成分析

果实挥发性成分构成主要包括各类挥发性成分的数量、含量及其在总挥发性成分中所占比例等[22],本研究中,供试日中性草莓的果实挥发性成分构成在不同季节、不同品种间存在显著差异(表2)。

‘阿尔比’‘蒙特瑞’在秋季时果实挥发性成分数量显著高于冬季,而‘波特拉’和‘圣安德瑞斯’在冬季时果实挥发性成分数量会增多;在各类成分中,酯类数量变化最大,这也是引起总挥发物数量发生变化的主要原因。‘阿尔比’秋季果实的酯类、醇类数量显著高于冬季果实,内酯数量显著低于冬季果实,其他变化不显著;‘蒙特瑞’秋季果实中,酯类、内酯类和酸类成分数量显著高于冬季果实;‘波特拉’秋季果实的酯类、酸类数量显著低于冬季果实,萜烯类、内酯类、醛类数量则显著高于冬季果实;‘圣安德瑞斯’秋季果实中只有酯类数量显著低于冬季果实,而萜烯类、醛类数量显著高于冬季果实。

表1 日中性草莓中检测到的挥发性成分及其气味阈值和气味描述

续表1 Continued table 1

续表1 Continued table 1

续表1 Continued table 1

ND表示“未检测到”
ND means ‘not detected’

‘阿尔比’和‘波特拉’冬季果实的挥发性成分总含量显著高于秋季果实,‘圣安德瑞斯’在冬季时挥发性成分含量显著低于秋季,而‘蒙特瑞’差异不显著。在所有供试品种中,秋季果实的酯类含量均显著低于冬季果实,而萜烯类含量则高于冬季果实,其中‘阿尔比’‘蒙特瑞’和‘圣安德瑞斯’差异显著。另外,‘阿尔比’秋季果实的酮类、内酯类、醛类、酸类含量分别显著低于冬季果实,醇类含量显著高于冬季果实;‘蒙特瑞’秋季果实的呋喃类、醛类、酸类含量均显著高于冬季果实;‘波特拉’秋季果实的醇类含量显著高于冬季,酸类则显著低于冬季;‘圣安德瑞斯’秋季果实的酮类、醇类、内酯类、呋喃类、醛类含量显著高于冬季,而酸类含量则显著低于冬季果实。

供试4个品种的酯类成分在总挥发性成分中的比例都是秋季显著低于冬季;萜烯类、醇类、呋喃类与酯类相反,秋季果实中的比例显著高于冬季;‘波特拉’和‘圣安德瑞斯’秋季果实的酮类比例显著高于冬季;除了‘圣安德瑞斯’秋季果实中内酯类的比例显著高于冬季,其他品种无显著变化;在醛类所占比例方面,‘蒙特瑞’‘波特拉’‘圣安德瑞斯’均为秋季果实显著高于冬季果实;只有‘蒙特瑞’秋季果实的酸类比例显著高于冬季,其他3个品种冬季果实酸类比例则显著增加。

2.3 挥发性成分的主成分分析

为进一步比较供试8个样品的果实挥发性成分差异,对检测到的88种成分的含量进行主成分分析,PC1和PC2的贡献率分别为39.2%和31.8%(图1)。在4个品种中,只有‘波特拉’的秋、冬季样品分布于同一象限,2个样品间距离最小,说明‘波特拉’果实的挥发性成分及其含量受季节变化影响最小,而‘圣安德瑞斯’的样品间距离最远,果实挥发性成分含量受季节影响最大。不同品种的冬季果实均趋于PC1的负半轴分布,除‘波特拉’外,其他3个品种的秋季果实均趋于PC1的正半轴。88种挥发性成分在载荷图中主要分布于PC2的正半轴,其中贡献较大的包括丁酸乙酯、丁酸丁酯、芳樟醇、橙花叔醇、-金合欢烯、苯甲醛、丁酸-2-己烯酯、2-庚酮、2-甲基丙酸-1-甲基丁酯、2-庚醇、-癸内酯、-十二内酯、DMMF等,以上成分在供试品种不同季节果实的香气物质含量差异中起重要作用。

表2 不同季节日中性草莓果实挥发性成分构成

每行的不同字母表示在<0.01水平差异极显著。下同
Means with the different letter are significantly different at<0.01 in each row. The same as below

A:主成分得分图;B:主成分载荷图 A: PCA score plots; B: PCA loading plots

Al_a:阿尔比_秋;Al_w:阿尔比_冬;Me_a:蒙特瑞_秋;Me_w:蒙特瑞_冬;Po_a:波特拉_秋;Po_w:波特拉_冬;SA_a:圣安德瑞斯_秋;SA_w:圣安德瑞斯_冬。图中数字对应表1中的88种挥发性成分。下同

Al_a: Albion_autumn; Al_w: Albion_winter; Me_a: Menterey_autumn; Me_w: Menterey_winter; Po_a: Portola_autumn; Po_w: Portola_winter; SA_a: San Andreas_autumn; SA_w: San Andreas_winter. The numbers in this figure correspond to the 88 volatiles listed in table 1. The same as below

图1 不同季节日中性草莓果实挥发性成分检测含量的主成分分析

Fig. 1 Principal component analysis of detected content of volatiles in day-neutral strawberries harvested in autumn and winter

2.4 主要挥发性成分的香气值分析

挥发性成分的香气值是含量与香气阈值之比,能反映该成分对香气的贡献,而含量≥香气阈值的成分才能被感觉器官感知。与低香气值成分相比,很显然,香气值≥1的成分对香气形成的贡献更大[14,42]。本研究中有57种挥发性成分检索到香气阈值并计算了香气值(表1、表3),其中有30种成分在至少1个样品中的香气值>1,下面就以这些香气值>1的挥发性成分为具体分析对象。

乙酸己酯、丁酸甲酯、己酸甲酯、己酸乙酯、芳樟醇、橙花叔醇、DMMF、反式-2-己烯醛、壬醛9种成分在所有样品中的香气值均大于1,是供试品种果实香气的主要组成成分。丁酸乙酯的平均香气值最高,为261.50,其次为己酸乙酯214.17,芳樟醇166.08位列第三;乙酸丁酯、丁酸甲酯在4个供试品种冬季果实中的香气值均显著高于秋季果实,而芳樟醇、橙花叔醇、反式-2-己烯醇、顺式-2-庚烯醛则呈相反趋势,香气值在其中3个品种的冬季果实中显著降低。

这些成分的分布及其在不同季节间的变化趋势因品种而异。丁酸乙酯、芳樟醇、己酸乙酯、反式-2-己烯醛、-癸内酯、丁酸甲酯、乙酸己酯、壬醛等成分对‘阿尔比’果实香气贡献较大;‘阿尔比’秋季果实中,含有17种香气值>1的成分,它们的香气值之和为1 094.84,而冬季果实中则含有19种,香气值之和为1 610.72,大大高于秋季;有14种成分在两个季节的果实中香气值均>1,其中芳樟醇和橙花叔醇秋季的香气值显著高于冬季,乙酸己酯、丁酸甲酯、丁酸乙酯、己酸乙酯、-癸内酯等10种成分则显著低于冬季;与秋季果实相比,冬季果实中酯类、醛类、内酯类、酮类成分的香气值分别升高,萜烯类、呋喃类的香气值降低,其中丁酸乙酯、己酸乙酯的香气值增加最多。

‘蒙特瑞’的秋季和冬季果实中各含有18种香气值>1的成分,它们的香气值之和分别为1 094.07和759.86,冬季略低;其中16种成分相同,丁酸乙酯、芳樟醇、己酸乙酯、乙酸己酯、反式-2-己烯醛、DMMF、壬醛、丁酸甲酯、橙花叔醇等对‘蒙特瑞’果实香气形成起重要作用。乙酸己酯、乙酸辛酯、丁酸乙酯、己酸乙酯、橙花叔醇、DMMF、反式-2-己烯醛等成分在秋季的香气值显著高于冬季;酯类、萜烯类、醛类和呋喃类在冬季果实中的香气值均低于秋季果实。

表3 不同季节日中性草莓果实的挥发性成分香气值

续表3 Continued table 3

续表3 Continued table 3

和其他3个品种相比,‘波特拉’果实中香气值>1的成分较少,秋季和冬季果实中分别含有17种和14种成分,总香气值也较低,仅为461.17和610.13;其中冬季果实酯类香气值之和是秋季的3.8倍,呋喃类香气值比秋季略有增加,而萜烯类和醛类的香气值则分别低于秋季果实;癸醛是秋季果实中香气值最高的成分,而己酸乙酯在冬季果实中的香气值比秋季果实高316.67,占总香气值的50%以上,是引起冬季果实香气值增加的主要因素;总的来说,己酸乙酯、芳樟醇、反式-2-己烯醛、壬醛、己醛、3-甲基丁酸甲酯、乙酸己酯、丁酸甲酯等对‘波特拉’香气形成作用较大。

‘圣安德瑞斯’果实中香气值>1的成分较多,在秋季和冬季果实中数量分别为18种和21种,己酸乙酯、芳樟醇、癸醛、-癸内酯、反式-2-己烯醛、壬醛、乙酸己酯等是‘圣安德瑞斯’的重要香气成分;秋季‘圣安德瑞斯’香气值>1成分的总香气值为1 027.48,高于冬季的779.88,但秋季果实中未检测到丁酸乙酯,而冬季果实含有丁酸乙酯,并且香气值较高;酯类的数量和香气值在冬季均高于秋季,萜烯类、醛类、内酯类、呋喃类成分的香气值则低于秋季果实,其中己酸乙酯、芳樟醇、癸醛的香气值显著降低,是造成‘圣安德瑞斯’冬季总香气值下降的主要原因。

2.5 30种香气值>1成分的聚类热图分析

通过聚类热图分析,可以将供试样品分为3大类(图2)。第I类包括‘阿尔比’秋季果实、‘蒙特瑞’秋季果实和‘阿尔比’冬季果实,这3个样品的总香气值和丁酸乙酯的香气值均高于其他样品,另外,芳樟醇、己酸乙酯、丁酸辛酯、丁酸丁酯、-十二内酯、DMMF的香气值也较高,戊醛、己酸甲酯、己醛、2-甲基丁酸甲酯的香气值较低,癸醛香气值为0;第II类包括‘圣安德瑞斯’冬季果实、‘蒙特瑞’冬季果实和‘波特拉’秋季果实,芳樟醇、己酸乙酯、壬醛、乙酸-2-甲基丁酯、2-甲基丁酸甲酯香气值较高,反式-2-己烯醛、DMMF、橙花叔醇香气值较低;第III类只有‘波特拉’冬季果实和‘圣安德瑞斯’秋季果实,和前两类相比,这一类的己酸乙酯香气值最高,壬醛、己酸甲酯、D-柠檬烯、己醛香气值较高,乙酸己酯、乙酸叶醇酯、乙酸丁酯、丁酸丁酯、2-戊酮香气值较低,丁酸乙酯香气值为0。另外,从图2也可以看出,‘阿尔比’秋、冬果实同属第I类,香气差异最小;‘圣安德瑞斯’的大多数成分在两个季节果实中的香气值差异大,因而香气变化最大。

图2 不同季节日中性草莓果实中30种挥发性成分香气值的热图分析

3 讨论

研究表明,光照、温度是影响挥发性成分合成的主要环境因素,光强和光质都能调控挥发物的合成,温度变化也能导致植物挥发性成分的差异[43-49]。提高光合有效辐射可以促进多种落叶树木合成和释放甲醇[49];当光强从65 μmol·m-2·s-1增强到295 μmol·m-2·s-1,冬小麦植株中的芳樟醇、-丁子香烯、乙酸苯甲酯、()-罗勒烯、()-3-己烯醛、()-2-己烯醛、()-3-己烯-1-醇、()-2-己烯-1-醇、乙酸己酯和乙酸-()-3-己烯-1-酯等成分的含量也随之升高[50];较高的光量子通量密度(PFD,photon flux density)能增加山香属植物中香桧烯、-蒎烯、-水芹烯、双环大牻牛儿烯等萜烯类成分含量,而日光灯光谱、红光、10﹕4红蓝光等不同光质也会影响萜烯类合成,光质不同造成的影响也不同[45];矮牵牛中2-苯乙醇的含量水平则在红光和远红光下升高[46]。温度对不同植物挥发性成分的影响存在差异,随着栽培温度在22℃/15℃、25℃/18℃、28℃/20℃范围内升高,蓼()叶片中挥发性醛的相对含量降低,而萜烯、醇、烷烃的相对含量增高[51];与昼/夜温度22℃/16℃相比,28℃/22℃使矮牵牛花的苯甲醛、苯甲醇、苯乙醇、苯甲酸苯甲酯、苯甲酸乙酯、苯甲酸甲酯、丁子香酚、异丁子香酚、苯乙醛等挥发性成分的含量降低,这可能与高温下调了相关基因表达有关[43]。挥发性成分合成和色素合成间存在一定联系,苯丙氨酸在L-苯丙氨酸脱氨酶(PAL)作用下的产物可以进入苯丙烷类代谢途径和花青素合成途径,分别生成苯丙烷类挥发性成分和花青素类色素[43,52-53],而调控植物色素合成的主要外部因素也是光、温条件[52,54-55]。因此,属于R2R3-MYB家族的一些转录因子也能参与挥发性成分代谢的调控,例如拟南芥的、甜樱桃的、苹果的等,在矮牵牛和玫瑰中表达,能激活苯丙烷类代谢途径中的多个基因,促进花青素和香气物质的合成[55-59]。高温环境会使矮牵牛中苯丙烷类香气成分的合成受抑制,这可能与苯丙烷类代谢途径和莽草酸途径中相关结构基因的表达下调和负调控因子的表达量增加有关,但在矮牵牛中过量表达,即使在长期高温环境中,转基因株系的挥发物水平也会保持不变甚至更高[43]。研究发现,在月季中,miR156-调控模块能调控花青素及大牻牛儿烯D和一些萜烯类挥发性成分的合成,随着miR156下调表达,形成MYB-bHLH- WD40蛋白复合体,激活了花青素合成酶基因和大牻牛儿烯D合成酶基因,而的表达下调会降低包括橙花叔醇合酶基因在内的一些萜烯类合成酶基因的表达,从而导致某些萜烯类成分的减少甚至缺失[60]。

季节变化、气候差异以及不同栽培模式所导致光照、温度等环境条件的变化,会直接影响果实香气物质合成。在中国酿酒葡萄产区中,河北昌黎夏季炎热、半湿润,而甘肃高台夏季凉爽、干燥,两地生产的‘赤霞珠’葡萄的挥发性成分存在差异[61],昌黎所产‘赤霞珠’含有更丰富的苯甲醇、苯乙醇、1-己醇、1-辛烯-3-醇等醇类物质,而己醛、庚醛、2-甲氧基-3-异丁基吡嗪和反式--大马酮在高台所产‘赤霞珠’中的含量水平更高。温室栽培能提高鲜食葡萄果实中的绿叶香气,但露地栽培条件下,对香气贡献较大、具有花香和甜香气味的单萜化合物含量更高,这种差异可以在一定程度上解释温室葡萄和露地葡萄香气的不同[18,62]。同样,具有柑橘、花香等气味的癸醛、橙花醛、香叶醛、-紫罗酮、金合欢基丙酮、香叶基丙酮等成分在露地番茄中的水平显著高于大拱棚番茄[63]。研究发现,光合有效辐射是影响露地草莓挥发性成分构成的主要因素[24],光照强度能正向调控C13-降异戊二烯和单萜类物质的合成,因而设施条件下的光照减弱影响了萜烯合成相关基因的表达,降低了果实中单萜化合物的含量,特别是芳樟醇的含量[64-66],而光照减弱能促进‘Delicious’苹果酯类物质的合成[67]。本研究中,4个供试品种秋季果实的酯类含量、比例均显著低于冬季果实,萜烯类含量高于冬季果实,而萜烯类、醇类、呋喃类比例分别显著高于冬季果实,而且乙酸丁酯、丁酸甲酯等酯类成分和芳樟醇、橙花叔醇等萜烯类成分的香气值变化也遵循这一规律,与前人研究结果基本相符,说明秋季大拱棚内较强的光照能促进草莓萜烯类成分的合成,冬季日光温室的弱光则有利于酯类合成。另外,有研究表明,低于15℃的气温有助于草莓香气物质的生成,Sanz等[68]对花后24—31 d的‘Camarosa’果实进行离体培养,发现25℃/10℃的昼/夜温度最有利于香气成分积累,但目前尚缺少温度影响草莓挥发性成分构成的报道。八倍体栽培草莓基因组测序已完成[69],有助于今后深入挖掘参与草莓香气代谢及调控的基因,也有助于进一步研究环境因素的变化对香气形成的影响,这对人为调控草莓果实品质具有重要价值。

根据香气值,可以将果实的所有挥发性成分分为两类,其中香气值<1的成分的作用尚未明确,而香气值≥1的成分可以通过感官感知,是与果实香气表型相关的优势成分[8,70]。本研究中,有30种成分在至少1个样品中香气值>1,其中乙酸己酯、丁酸甲酯、丁酸乙酯、己酸甲酯、己酸乙酯、芳樟醇、DMMF、-癸内酯、反式-2-己烯醛等成分在草莓中早有报道,与果实香气密切相关[10,12,14,16,28,71-74]。果实的香气特点主要由高香气值成分决定[60],通过比较各样品香气值>1的成分以及进行聚类热图分析,可以发现,本研究中丁酸乙酯、己酸乙酯、丁酸丁酯、DMMF、芳樟醇等成分对不同季节果实香气差异贡献较大。而将样品分类后,3类样品的高香气值成分各不相同:第I类的总香气值最高,3个样品丁酸乙酯的香气值均远远高于其他样品,芳樟醇和己酸乙酯的香气值也比较高;第II类样品的香气值较高的成分为芳樟醇和己酸乙酯;第III类的特点是己酸乙酯的香气值高于其他样品,而丁酸乙酯香气值为0。草莓果实中与“草莓味”正相关的挥发性成分是3-甲基丁酸甲酯(2=0.90)和丁酸乙酯(2=0.96)[14],如果将本研究供试样品的3-甲基丁酸甲酯和丁酸乙酯的香气值相加进行比较,结果会发现该值在第I类中最高,第II类居中,第III类最低,与热图分类结果完全相同,也与样品的田间表现基本一致。总的来说,4个供试品种中,‘阿尔比’表现为果实香气较浓,而且香气的季节间差异最小,而‘圣安德瑞斯’果实香气受季节影响最大。

4 结论

季节变化能显著影响日中性草莓果实的酯类和萜烯类成分构成,与秋季相比,4个供试品种冬季果实的酯类含量、比例升高,其中丁酸甲酯、丁酸丁酯的平均含量提高1—2倍,而萜烯类含量、比例降低,芳樟醇、橙花叔醇、D-柠檬烯等成分平均含量明显降低。香气值>1的成分在不同季节间的分布趋势因品种而异,丁酸乙酯、己酸乙酯、芳樟醇是平均香气值最高的3种成分,丁酸乙酯、己酸乙酯、丁酸丁酯、DMMF、芳樟醇等成分对不同季节果实香气差异贡献较大。供试品种中,‘波特拉’果实挥发性成分含量受季节影响最小;‘阿尔比’在秋季和冬季均表现为总香气值高,丁酸乙酯香气值也高,果实香气受季节影响最小;而‘圣安德瑞斯’果实挥发性成分含量和香气均受季节影响最大。季节转换引起的光照和温度变化可能是造成日中性草莓果实香气季节性差异的主要原因。

[1] ZHANG Y T, WANG G X, DONG J, ZHONG C F, CHANG L L, ZHANG H L. The current progress in strawberry breeding in China., 2017, 1156: 7-11.

[2] DALE A, HANCOCK J F, LUBY J J. Breeding dayneutral strawberries for northern North America., 2002, 567: 133-136.

[3] 沈岚, 张国芳, 吕鹏飞, 赵天荣, 赵已栋, 黄坚. 美系日中性草莓宁波引种试验. 黑龙江农业科学, 2016, 3: 74-76.

SHEN L, ZHANG G F, LYU P F, ZHAO T R, ZHAO Y D, HUANG J. Experiment of introduction American mid-day strawberry varieties in Ningbo., 2016, 3: 74-76. (in Chinese)

[4] 董静, 张运涛, 王桂霞, 钟传飞, 常琳琳. 日光温室栽培不同四季草莓的产量品质比较//张运涛, 雷家军, 王桂霞. 草莓研究进展(V). 北京: 中国农业出版社, 2017: 365-369.

DONG J, ZHANG Y T, WANG G X, ZHONG C F, CHANG L L. Comparison on yield and fruit quality of day-neutral and everbearing strawberries planted in greenhouse//ZHANG Y T, LEI J J, WANG G X.. Beijing: Chinese Agriculture Press, 2017: 365-369. (in Chinese)

[5] 汪国鲜, 孙建丽, 蒋海玉, 杨春梅, 吴丽芳, 单芹丽, 余蓉培, 阮继伟. 日中性草莓品种主要经济性状评价. 西南农业学报, 2018, 31(10): 2179-2184.

WANG G X, SUN J L, JIANG H Y, YANG C M, WU L F, SHAN Q L, YU R P, RUAN J W. Determination and analysis of major economic traits of day-neutral strawberry cultivars., 2018, 31(10): 2179-2184. (in Chinese)

[6] PYYSALO T, HONKANEN E, HIRVI T. Volatiles of wild strawberries,L, compared to those of cultivated berries,cv Senga sengana., 1979, 27: 19-22.

[7] ULRICH D, HOBERG E, RAPP A, KECKE S. Analysis of strawberry flavor-discrimination of aroma types by quantification of volatile compounds., 1997, 205: 218-223.

[8] ZABETAKIS I, HOLDEN M A. Strawberry flavor: analysis and biosynthesis., 1997, 74: 421-434.

[9] DOUILLARD C, GUICHARD E. The aroma of strawberry (): Characterization of some cultivars and influence of freezing., 1990, 50: 517-531.

[10] LARSEN M, POLL L. Odour thresholds of some important aroma compounds in strawberries., 1992, 195: 120-123.

[11] SCHIEBERLE P, HOFMANN T. Evaluation of the character impact odorants in fresh strawberry juice by quantitative measurements after sensory studies on model mixtures., 1997, 45: 227-232.

[12] PÉREZ A G, RIOS J J, SANZ C, OLÍAS J M. Aroma components and free amino acids in strawberry variety Chandler during ripening., 1992, 40: 2232-2235.

[13] PÉREZ A G, SANZ C, OLÍAS J M. Aroma quality evaluation of strawberry cultivars in Southern Spain., 1997, 439: 337-340.

[14] DU X, PLOTTO A, BALDWIN E, ROUSEFF R. Evaluation of volatiles from two subtropical strawberry cultivars using GC- Olfactometry, GC-MS Odor activity values, and sensory analysis., 2011, 59(23): 12569-12577.

[15] 张运涛, 董静, 王桂霞. 草莓香味的形成和香味育种. 中国农业科学, 2004, 37(7): 1039-1044.

ZHANG Y T, DONG J, WANG G X. Formation of aroma volatiles in strawberry fruit and aroma breeding., 2004, 37(7): 1039-1044. (in Chinese)

[16] FORNEY C F, KALT W, JORDAN M A. The composition of strawberry aroma is influenced by cultivars, maturity, and storage., 2000, 35: 1022-1026.

[17] GÓMEZ-MÍGUEZ M J, GÓMEZ-MÍGUEZ M, VICARIO I M, HEREDIA F J. Assessment of colour and aroma in white wines vinifications: Effects of grape maturity and soil type., 2007, 79(3): 758-764.

[18] 孙磊, 钱旭, 张国军, 闫爱玲, 王晓玥, 王慧玲, 任建成, 徐海英. ‘香妃’和‘早玫瑰香’葡萄温室与露地栽培单萜积累差异分析. 园艺学报, 2018,45(8): 1467-1478.

SUN L, QIAN X, ZHANG G J, YAN A L, WANG X Y, WANG H L, REN J C, XU H Y. Differential monoterpenes accumulation of ‘Xiangfei’ and ‘Zao Meiguixiang’ grapes between greenhouse and open-field cultivation., 2018, 45(8): 1467-1478. (in Chinese)

[19] LU H Y, WANG K D, WANG L, LI D, YAN J W, BAN Z J, LUO Z S, LI L, YANG D M. Effect of superatmospheric oxygen exposure on strawberry (Duch.) volatiles, sensory and chemical attributes., 2018, 142: 60-71.

[20] FU X M, CHENG S H, ZHANG Y Q, DU B, FENG C, ZHOU Y, MEI X, JIANG Y M, DUAN X W, YANG Z Y. Differential responses of four biosynthetic pathways of aroma compounds in postharvest strawberry (Duch.) under interaction of light and temperature., 2017, 221: 356-364.

[21] IHSAN K, INCILAY G, TUGCA B, KUBRA S, IHRAHIM SANI O, BANU B, BELGIN C, FERDA S. Effect of fruit maturity level on quality, sensory properties and volatile composition of two common apricot (L.) varieties., 2018, 55(7): 2671-2678.

[22] DONG J, ZHANG Y T, TANG X W, JIN W M, HAN Z H. Differences in volatile ester composition betweenandand implications for strawberry aroma patterns., 2013, 150: 47-53.

[23] 马微, 牛莹莹, 骆强伟, 孙峰, 伍国红, 廖康. 吐鲁番地区温室与露地栽培葡萄枝叶生长及果实品质差异分析. 新疆农业科学, 2016, 53(7): 1204-1209.

MA W, NIU Y Y, LUO Q W, SUN F, WU G H, LIAO K. Variance analysis on vegetative organ growth and fruit quality of grape in the greenhouses and open field in Turpan., 2016, 53(7): 1204-1209. (in Chinese)

[24] SAMYKANNO K, PANG E, MARRIOTT P J. Genotypic and environmental effects on flavor attributes of ‘Albion’ and ‘Juliette’ strawberry fruits., 2013, 164: 633-642.

[25] KAFKAS E, TÜREMIS N, BILGILI B, ZARIFIKHOSROSHAHI M, BURGUT A, KAFKAS S. Aroma profiles of organically grown ‘Benicia’ and ‘Albion’ strawberries., 2017, 1156: 703-708.

[26] 谢剑平. 烟草香原料. 北京: 化学工业出版社, 2009: 261-355.

XIE J P.. Beijing: Chemical Industry Press, 2009: 261-355. (in Chinese)

[27] PINO J A, MESA J. Contribution of volatile compounds to mango (L.) aroma., 2006, 21(2): 207-213.

[28] JETTI R R, YANG E, KURNIANTA A, FINN C, QIAN M C. Quantification of selected aroma-active compounds in strawberries by headspace solid-phase microextraction gas chromatography and correlation with sensory descriptive analysis., 2007, 72 (7): S487-S496.

[29] QIAN M C, WANG Y Y. Seasonal variation of volatile composition and odor activity value of ‘Marion’ (spp.) and ‘Thornless Evergreen’ (L.) blackberries., 2005, 70(1): C13-C20.

[30] NOGUEROL-PATO R, GONZÁLEZ-BARREIRO C, CANCHO- GRANDE B, SIMAL-GÁNDARA J. Quantitative determination and characterization of the main odourants ofl red wines., 2009, 117: 473-484.

[31] FERREIRA V, AZNAR M, LÓPEZ R, CACHO J. Quantitative gas chromatography-olfactometry carried out at different dilutions of an extract. Key differences in the odor profiles of four high-quality Spanish aged red wines., 2001, 49(10): 4818-4824.

[32] FRANCO M, PEINADO R A, MEDINA M, MORENO J. Off-vine grape drying effect on volatile compounds and aromatic series in must from Pedro Ximénez grape variety., 2004, 52(12): 3905-3910.

[33] WU Y S, DUAN S Y, ZHAO L P, GAO Z, LUO M, SONG S R, XU W P, ZHANG C X, MA C, WANG S P. Aroma characterization based on aromatic series analysis in table grapes., 2016, DOI: 10.1038/srep31116.

[34] ACREE T, ARN H. Flavornet and human odor space: Gas chromatography-olfactometry (GCO) of natural products. 2010, http://www.flavornet.org/flavornet.html.

[35] MOYANO L, ZEA L, MORENO J, MEDINA M. Analytical study of aromatic series in sherry wines subjected to biological aging., 2002, 50(25): 7356-7361.

[36] GENOVESE A, LAMORTE S A, GAMBUTI A, MOIO L. Aroma of Aglianico and Uva di Troia grapes by aromatic series., 2013, 53(1): 15-23.

[37] KIM Y, LEE K G, KIM M K. Volatile and non-volatile compounds in green tea affected in harvesting time and their correlation to consumer preference., 2016, 53(10): 3735-3743.

[38] RICCI A, CIRLINI M, LEVANTE A, DALL’ASTA C, GALAVERNA G, LAZZI C. Volatile profile of elderberry juice: Effect of lactic acid fermentation using,andstrains., 2018, 105: 412-422.

[39] WANG L B, BAI J H, YU Z F. Responses of volatile compounds in inner tissues on refrigeration in full ripe tomatoes., 2017: 41: e13272, DOI: 10. 1111/jfpp. 13272

[40] PEINADO R A, MORENO J, BUENO J E, MORENO J A, MAURICIO J C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration., 2004, 84: 585-590.

[41] PEINADO R A, MAURICIO J C, MORENO J. Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions byvar.., 2006, 94: 232-239.

[42] CHEN S X, ZHANG R R, HAO L N, CHEN W F, CHENG S Q. Profiling of volatile compounds and associated gene expression and enzyme activity during fruit development in two cucumber cultivars., 2015, DOI: 10.1371/journal.pone.0119444.

[43] CNA’ANI A, MÜHLEMANN J K, RAVID J, MASCI T, KLEMPIEN A, NGUYEN T T H, DUDAREVA N, PICHERSKY E, VAINSTEIN A.×floral scent production is negatively affected by high-temperature growth conditions., 2015(38): 1333-1346.

[44] CHENG S H, FU X M, MEI X, ZHOU Y, DU B, WATANABE N, YANG Z Y. Regulation of biosynthesis and emission of volatile phenylpropanoids/benzenoids in×flowers by multi- factors of circadian clock, light, and temperature., 2016, 107: 1-8.

[45] ANDRADE H B, BRAGA A F, BERTOLUCCI S K V, HSIE B S, SILVA S T, PINTO J E B P. Effect of plant growth regulators, light intensity and LED on growth and volatile compound of(L.) poitplantlets., 2017, 1155: 277-284.

[46] COLQUHOUN T A, SCHWIETERMAN M L, GILBERT J L, JAWORSKI E A, LANGER K M, JONES C R, RUSHING G V, HUNTER T M, OLMSTEAD J, CLARK D G, FOLTA K M. Light modulation of volatile organic compounds from petunia flowers and select fruits., 2013, 86: 37-44.

[47] SAGAE M, OYAMA-OKUBO N, ANDO T, MARCHESI E, NAKAYAMA M. Effect of temperature on the floral scent emission and endogenous volatile profile of., 2008, 72: 110-115.

[48] FARRÉ-ARMENGOL G, FILELLA I, LLUSIÀ J, NIINEMETS Ü, PEŇUELAS J. Changes in floral bouquets from compound-specific responses to increasing temperatures., 2014, 20: 3660-3669.

[49] FOLKERS A, HÜVE K, AMMANN C, DINDORF T, KESSELMEIER J, KLEIST E, KUHN U, UERLINGS R, WILDT J. Methanol emissions from deciduous tree species: dependence on temperature and light intensity., 2008, 10: 65-75.

[50] WENDA-PIESIK A. Volatile organic compound emissions by winter wheat plants (L.) underspp. Infestation and various abiotic conditions., 2011, 20(5): 1335-1342.

[51] GOH H H, KHAIRUDIN K, SUKIRAN N A, NORMAH M N, BAHARUM S N. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations., 2016, 18(S1): 130-139.

[52] UBI B E, HONDA C, BESSHO H, KONDO S, WADA M, KOBAYASHI S, MORIGUCHI T. Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature., 2006, 170: 571-578.

[53] BOATRIGHT J, NEGRE F, CHEN X L, KISH C M, WOOD B, PEEL G, ORLOVA I, GANG D, RHODES D, DUDAREVA N. Understandingbenzenoid metabolism in petunia petal tissue., 2004, 135: 1993-2011.

[54] PROCISSI A, DOLFINI S, RONCHI A, TONELLI C. Light- dependent spatial and temporal expression of pigment regulatory genes in developing maize seeds., 1997, 9: 1547-1557.

[55] TAKOS A M, JAFFÉ F W, JACOB S R, BOGS J, ROBINSON S P, WALKER A R. Light-induced expression of agene regulates anthocyanin biosynthesis in red apples., 2006, 142: 1216-1232.

[56] BOREVITZ J O, XIA Y, BLOUNT J, DIXON R A, LAMB C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis., 2000, 12: 2383-2394.

[57] ZVI M M B, NEGRE-ZAKHAROV F, MASCI T, OVADIS M, SHKLARMAN E, BEN-MEIR H, TZFIRA T, DUDAREVA N, VAINSTEIN A. Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers., 2008, 6: 403-415.

[58] ZVI M M B, SHKLARMAN E, MASCI T, KALEV H, DEBENER T, SHAFIR S, OVADIS M, VAINSTEIN A.transcription factor enhances production of phenylpropanoid and terpenoid scent compounds in rose flowers., 2012, 195: 335-345.

[59] SHEN X J, ZHAO K, LIU L L, ZHANG K C, YUAN H Z, LIAO X, WANG Q, GUO X W, LI F, LI T H. A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv. Hong Deng (L.)., 2014, 55(5): 862-880.

[60] RAYMOND O, GOUZY J, JUST J, BADOUIN H, VERDENAUD M, LEMAINQUE A, VERGNE P, MOJA S, CHOISNE N, PONT C, CARRÈRE S, CAISSARD J, COULOUX A, COTTRET L, AURY J, SZÉCSI J, LATRASSE D, MADOUI M, FRANÇOIS L, FU X P, YANG S H, DUBOIS A, PIOLA F, LARRIEU A, PEREZ M, LABADIE K, PERRIER L, GOVETTO B, LABROUSSE Y, VILLAND P, BARDOUX C, BOLTZ V, LOPEZ-ROQUES C, HEITZLER P, VERNOUX T, VANDENBUSSCHE M, QUESNEVILLE H, BOUALEM A, BENDAHMANE A, LIU C, BRIS M L, SALSE J, BAUDINO S, BENHAMED M, WINCKER P, BENDAHMANE M. Thegenome provides new insights into the domestication of modern roses., 2018. https://doi. org/10.1038/s41588- 018-0110-3.

[61] XU X Q, LIU B, ZHU B Q, LAN Y B, GAO Y, WANG D, REEVES M J, DUAN C Q. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions., 2015, 89: 123-133.

[62] DUAN L L, PAN Q H, TANG X J, YANG Q, JIANG R, SHI Y, DUAN C Q. Characteristic aroma compounds in two newcultivars (table grapes) and impact of vintage and greenhouse cultivation., 2014, 35(2): 264-277.

[63] LEE J H J, JAYAPRAKASHA G K, RUSH C M, CROSBY K M, PATIL B S. Production system influences volatile biomarkers in tomato., 2018, 14: 99.

[64] FRIEDEL M, FROTSCHER J, NITSCH M, HOFMANN M, BOGS J, STOLL M, DIETRICH H. Light promotes expression of monoterpene and flavonol metabolic genes and enhances flavor of winegrape berries (L. cv. Riesling)., 2016, 22(3): 409-421.

[65] PASCUAL G A, SERRA I, CALDERÓN-ORELLANA A, LAURIE V F, LOPÉZ M D. Changes in concentration of volatile compounds in response to defoliation of Muscat of Alexandria grapevines grown under a traditional farming system., 2017, 77(4): 373-381.

[66] ZHANG E, CHAI F, ZHANG H, LI S, LIANG Z, FAN P. Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp., 2017, 237: 379-389.

[67] MILLER T W, FELLMAN J K, MATTHEIS J P, MATTINSON D S. Factors that influence volatile ester biosynthesis in ‘Delicious’ apples., 1998, 464: 195-200.

[68] SANZ C, PÉREZ A G, OLÍAS R. Effects of temperature on flavor components in “” grown strawberry., 2002, 567: 365-368.

[69] EDGER P P, POORTEN T J, BUREN R V, HARDIGAN M A, COLLE M, MCKAIN M R, SMITH R D, TERESI S J, NELSON A D L, WAI C M, ALGER E I, BIRD K A, YOCCA A E, PUMPLIN N, OU S J, BEN-ZVI G, BRODT A, BARUCH K, SWALE T, SHIUE L, ACHARYA C B, COLE G S, MOWER J P, CHILDS K L, JIANG N, LYONS E, FREELING M, PUZEY J R, KNAPP S J. Origin and evolution of the octoploid strawberry genome., 2019, https://doi.org/10.1038/s41588-019-0356-4.

[70] ZHANG B, XI W P, WEI W W, SHEN J Y, FERGUSON I, CHEN K S. Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit., 2011, 60: 7-16.

[71] SCHREIER P. Quantitative composition of volatile constituents in cultivated strawberries,cv. Senga sengana, Senga litessa, and Senga gourmella., 1980, 31: 487-494.

[72] HAKALA M A, LAPVETELAINEN A T, KALLIA H P. Volatile compounds of selected strawberry varieties ananlyzed by purge-and- trap headspace GC-MS., 2002, 50: 1133-1142.

[73] OLBRICHT K, GRAFE C, WEISS K, ULRICH D. Inheritance of aroma compounds in a model population ofDuch., 2008, 127: 87-93.

[74] OLBRICHT K, ULRICH D. Domestication effects in European breeding history of strawberry demonstrated by aroma compound pattern., 2017, 1156: 61-68.

Comparative Study on Fruit Volatiles of Different Day-neutral Strawberry Cultivars in Autumn and Winter

DONG Jing, ZHONG ChuanFei, WANG GuiXia, CHANG LinLin, SUN Jian, SUN Rui, ZHANG HongLi, LI Rui, WEI YongQing, ZHENG ShuQi, ZHANG YunTao

(Beijing Academy of Forestry and Pomology Sciences/Beijing Engineering Research Center for Strawberry/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100093)

【】Fruit volatiles of day-neutral strawberries harvested in autumn and winter were compared to clarify the effects of seasonal changes on volatile composition and odor activity value (OAV) of volatiles, aiming to provide theoretical basis for research on strawberry aroma and utilization of day-neutral cultivars. 【】Matured fruits of day-neutral cultivars (including Albion, Monterey, Portola, and San Andreas) were harvested from high-tunnel in autumn and greenhouse in winter, respectively. Volatiles were extracted by using solid-phase microextraction (SPME), detected by gas chromatograph-mass spectrometer (GC-MS) and analyzed qualitatively and quantitatively. The numbers, contents, percentages and OAVs of volatiles were calculated. Principal component analysis (PCA) was employed to analyze the differences in volatiles content between autumn and winter strawberries. Clustered heatmap was used to classify the samples depending on the volatiles with OVA higher than 1. 【】A total of 88 individual volatiles were identified and the OAVs of 57 volatiles were calculated. It was found that there were 30 components with OAV higher than 1. Effects of seasonal changes on the number of each chemical category and the total content of volatiles varied among cultivars. Compared to the autumn fruits, the content and percentage of esters in winter fruits were significantly higher, while terpenes were remarkably lower. The result of PCA indicated that, compared with other cultivars, volatiles pattern of Portola showed less variation, whereas San Andreas showed the highest variation between two seasons. Ethyl butanoate was very important for these tested cultivars since its average OAV was the highest in all volatiles. The OAVs of butyl acetate and methyl butanoate in winter fruits were noticeably higher than that in autumn fruits. However, compared with autumn fruits, the winter fruits of each cultivar had a lower sum of terpene OAVs that were higher than 1. Ethyl butanoate, butyl butanoate, 4-methoxy-2, 5-dimethyl- 3()-furanone, ethyl hexanoate and linalool played an important role in the aroma differences between fruits of different seasons. The eight tested samples were classified into 3 groups using clustered heatmap. The group I included Albionautumn, Albionwinter and Montereyautumn, of which total OAVs and the OAVs of ethyl butanoate were significantly higher than other groups.【】Seasonal change had a remarkable impact on esters and terpenes in fruit volatiles of day-neutral strawberry cultivars. It was showed that the content and percentage of esters in winter fruits were significantly higher than autumn fruits, while the percentage of terpenes was remarkably lower in winter fruits. Among the 4 tested cultivars, Portola showed the least variation in volatile content between autumn and winter. Albion was the cultivar with intense aroma and its aroma performance presented the least changes when season changed, however, San Andreas was the one with the largest volatile variation both in volatile content and fruit aroma.

×; day-neutral cultivars; fruit volatiles composition; odor activity value; esters; terpenes

10.3864/j.issn.0578-1752.2019.13.010

2019-01-18;

2019-05-13

国家重点研发计划项目(2016YFE0112400)、国家自然科学基金(31601714)、北京市粮经作物产业创新团队项目(BAIC09-2019)

董静,E-mail:dj310730@sohu.com。

张运涛,E-mail:zhytao1963@126.com

(责任编辑 赵伶俐)

猜你喜欢
萜烯芳樟醇己酸
割手密萜烯合成酶(TPS)基因家族分析及其在生物胁迫下的表达分析
功能菌养窖液中己酸产生途径的证实及其在生产中的应用
漫步在森林当中为何让人感觉心情舒畅?
8个杧果品种胶乳挥发性成分及胶乳的灼伤机制初探
CTAB反胶束体系合成己酸乙酯及气相色谱法检测
金种子优质窖泥高产己酸菌的筛选鉴定及其应用性能分析
津酒老窖泥己酸菌的筛选及培养条件的优化
微生物菌剂对芳樟枝精油主成分芳樟醇的影响
微生物菌肥对芳樟叶精油主成分芳樟醇的影响
芫荽籽精油成分解析及其对秀丽隐杆线虫寿命和运动的影响