运用新媒体技术助力课堂教学,提升学生“数学建模”素养的教学案例

2019-01-17 04:33李红梅
锋绘 2019年12期
关键词:数学建模解决问题数量

李红梅

摘 要: 数学核心素养主要包括:数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析。其中,对于数学建模,详细描述为数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。

关键词: 新媒体技术;数学建模

数学核心素养主要包括:数学抽象、逻辑推理、数学建模、数学运算、直观想象、数据分析。其中,对于数学建模,详细描述为数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。

人教版小学数学六年级上册第三单元分数除法例7是解决工程问题。工程问题、行程问题、泄洪问题,都只是抽象数量关系的现实载体。在第三单元安排这个内容,目的是让学生通过解决此类问题,经历把现实问题模型化的过程,透过各种现实表象,找出隐藏其后的数量关系。让学生通过学习体会建模思想,提升学生的建模素养。在这个例题的教学中,我利用教学助手和ppt的交互作用,把抽象的概念和数量关系简单化,学生构建了工程问题的特点,理清了数量之间的关系,最后掌握了解答的方法,效果还是比较明显的。下面我就把我的教学过程的设计展示给大家。

在创设情境,导入新课环节,我出示了4道题,分别是:

(1)一段路长360米,甲队单独修20天完成。平均每天修多少米?

(2)一段路长360米,甲每天修18米,多少天完成?

(3)加工一批零件,计划6小时完成,平均每小时加工这批零件的几分之几?

(4)一项工程,施工方每天完成,几天可以完成全工程?

工程问题,学生在之前已经有过接触,但没有具体的理解各数量之间的关系,相对于其它数量关系,还是有一些难度。我在出示题的时候把1、2题放在一张课件上,这两道题相对比较简单,学生通过读题理解意思就能解决出来,但我在处理这两题时重点放在了先让学生知道每个数量叫什么名称,还有推导数量关系上了。我利用教学助手的圈画功能,先让学生说出每个数字代表的数量,学生的表述不规范,我做了总结,并把这些名称板书到黑板上,通过这个环节的教学,目的是让学生知道工程问题中的各个量之间的关系。为后面的学习做好铺垫。学生做完这两道题后,我又把教学助手转换到ppt格式上,让学生再一次巩固所整理的数量关系,加深认识,牢记关系。之后我出示了下一张课件,这个课件上的两道题中的工作总量都没有明确告诉是多少,用“加工一批零件”“一项工程”这样的语言描述,学生都说这两道题的工作总量不知道,不能直接计算,我鼓励学生大胆假设,尝试解决,通过比较,发现无论假设总长是多少,结果都一样。在此基础上进一步抽象,“也可以假设这条路的长度是1”,水道渠成。用单位“1”表示工作总量解决问题时比较简单。

在新授课环节,用课件完整呈现例题信息,“修一条道路,如果我们一队单独修,12天修完,如果我们二队单独修,18天修完。如果两队合修,多少天能修完?”。引导学生充分阅读,找出已知量和未知量,分析关键的信息,如“单独修”,“合修”等。“合修”是什么合在一起,有的学生说是天数合,通过验证发现把天数合起来,合作的时间比单独完成的时间都长,显然是不对的,“合修”是工作效率合起来。这样分析就把工程问题中的关键讲清楚了。要解决合作完成的时间,首先要分别把两队单独完成,每天完成的量做出来,也就是每个队的工作效率解决出来,合作是工作效率合在一起,所以最后求合作的工作时间就用工作总量÷工作效率和=工作时间这个数量关系来解答。

在这个环节中,我同样把教学助手和ppt课件进行交互使用,反复建构数量关系,为学生解决实际问题提供了清晰的线索和思路,进一步让学生体会并掌握数学模型思想。促进了学生解决问题能力的发展。

新媒體技术在本节课给学生提供了直观的素材,增大了教学容量,突破课堂教学难点,提高了课堂教学质量。学生在学习的过程中,经历自主探究、解决问题的过程,掌握用假设、验证等方法解决问题的基本策略,让学生体会建模思想。

猜你喜欢
数学建模解决问题数量
联系实际 解决问题
助农解决问题增收致富
在解决问题中理解整式
统一数量再比较
化难为易 解决问题
数学建模中创造性思维的培养
树立建模意识 培养学生创新思维
最小二乘法基本思想及其应用
建模思想在数学教学中的渗透研究
头发的数量