“条件概率”难点突破教学的实践与体会

2017-07-28 20:02彭凤海
神州·中旬刊 2017年5期
关键词:高中数学

彭凤海

摘要:“条件概率”是高中数学中重要的一项内容,非常考验学生的数学思维能力,但是其教学中存在诸多难点,教学效果不尽如人意。本文中通过文献综述说明“条件概率”的教学难点,通过实例对教学中的难点进行突破,说明一些教学实践和体会,希望对数学“条件概率”的教学发展有所裨益。

关键词:条件概率;高中数学;突破教学难点;实践与体会

“条件概率”属于高考理科考试范围,也是高中数学老师教授的重点内容之一,但是由于其概念抽象,难于理解,调研中发现学生的掌握情况不佳,怎样了解其中的教学难点,针对性的进行时间突破,强化教学效果,指引学生掌握条件概率计算公式和方法就成为所有数学教师研究的重点。

1 “条件概率”

国家新课标高中数学学科将“条件概率”作为增设内容,放置在《数学·选修2-3》第二章“随机变量及其分布”的第二节“二项分布及其应用”的第一小节[1],其概念为事件A在另外一个事件B已经发生条件下的发生概率,其中涵盖了古典概型和几何概型,涉及的理念包括随机事件、基本事件、和事件、互斥事件概率公式及古典概型概率公式等,计算观念较为抽象,需要教师在学习开始前,教导学生复习基础知识,便于使用。

2 “条件概率”教学难点

2.1各要素的不同特征

在学习“条件概率”时,第一个难点就是理解其概念内容,形成初步认识,其概念定义表示为p(A丨B),即已知B事件发生的情况下事件A的发生概率,在此概念中有三个要素,即:事件A、事件B和条件关系,此三者一项都不可缺少,事件A具有随机性,事件B具有确定性,条件关系则存在各种各样的表达方式,教师在教导此部分内容时,需要由浅入深、由难到易,使学生接受概念并灵活运用。

首先需要掌握的方法為直接计算法,这是最为基础也是最为简单的计算方法,可以采用简单的题目,如:随机抛掷一颗质地均匀的骰子,求掷出的点数不超过3的概率,可直接由由古典概型的概率公式得到p(A)=1/3,然后在此基础上加大难度,研究已知掷出了偶数点,求掷出的点数不超过3的概率,则掷出了偶数点为已知B事件,B变为新的样本空间,其样本点具有等可能性,可计算p(A丨B)=1/3[2]。

其次可以渐渐引入公式法的计算,引入中可以借由题目使学生明白条件关系不单单只有实质条件关系,也可能为形式条件关系,以下题目为例:甲乙丙按顺序抽一张电影票,探究乙抽到电影票时甲抽到电影票的概率,此题目中事件B于事件A发生后发生,不可能影响事件A发生,因此AB间关系只为形式关系;除此之外,在不存在显明条件结构的条件概率中,其中的条件事件定为实质条件,以下题为例:某生物有0.7的概率存活至20岁,有0.56的概率存活至25岁,那么这种动物现已20岁,求活至25岁的概率,此题目中活到20岁为已知A事件,也是活到25岁的先决条件,根据条件概率的计算公式p(A丨B)=p(AB)/p(A)=p(B)/p(A)=0.8.

2.2界定概念要素和细节

在了解了条件概率的定义和基本公式后,需要进行概念的深挖掘,体会其中的细节内容,将概念掌握的更为牢固。此过程需要教师用更多的题目实例进行讲解,对不同类型的经典题目进行对比区分,确保学生完全掌握。

在解题中要避免望文生义,将辅加条件和题目核心条件相混淆,以下面的题目为例:甲乙两人同时加工120个零件,甲加工70个,其中65个正品,乙加工60个,其中50个正品,求任取一件样品为正品的概率,任取一件样品为甲生产正品的概率?同学在解题过程中可能会存在误区,认为已知是取到了一件正品,误以为甲生产正品的概率为p=65/115,然而忽略了文中说随机抽取一件样品,答案应当是p=65/120,这是学生在条件概率中非常容易犯的错误,主要是因为对题目的理解出现了偏差,教师在教导中应当将同类型的题目列举,使学生反复细心读题,剖析题目含义。

2.3变式练习和纠错练习

在解题中,可能会出现一些疑似条件或者干扰条件,我们将条件概率引入主要是为了在充分利用已知信息时,还能在现有条件中进行更为复杂的概率计算,因此一些变式练习有助于增强我们对于概率计算的了解;除此之外,眼过千遍不如手过一遍,并且数学的学习是一个反复练习的过程,增加纠错练习,可以使学生尽量减少出错率,在教学中,学生练习题目后老师对结果进行点评,指出学生计算失误之初,并教导其进行辨析,可安排学生准备纠错本,将错误的题目进行记录,反复练习,特别是对于屡次出错的题目,必须尤为关注,明晰出错的原因和正确的解题思路。

2.4挖掘深层内容

人在学习中就是对一个概念不断深化的过程,数学学习,尤其是“条件概率”的学习更是如此。再了解了简单知识后,教师不妨对授课内容进行深化,比如说以下题目:已知质点M在实数轴上的区间[0,5]内随机地跳动,设事件A={2},事件B={2,3},试研究事件A、B的独立性。此题目明显比上文中提到的题目更为复杂,若通过几何概型的概率公式计算我们认为二者独立,若根据B作为新的样本空间,其样本点具有等可能性,古典概型概率公式计算其不独立,结果就变为矛盾结果,对此,教师必须明白须在条件概率p(A丨B)的定义中限定p(B)>0,当后续概率公式是由条件概率进行推导而来时[3],必须规定相应的条件。在深层挖掘中,一部分学生可能受到基础限制,很难理解这部分内容,教师需要细心讲解,并且根据学生的情况改变教课的分配比,做到因材施教。

3 总结

前文中提到,“条件概率”在数学中占有重要的位置,不仅仅是应付考试要求,更多的是对学生的思维进行启发,使学生体会到数学的乐趣,并且利用“条件概率”解决实际问题,但是“条件概率”的教学是存在一些难点的,相关教师必须自身知识水平过硬,做好教学规划,由浅到深的对概念、题目等进行讲解,确保学生掌握基础知识的情况下进行提高,且要注意通过不同类型的题目加深学生对于概念的理解,而不是纸上谈兵,也根据题目解答情况了解学生对于概念的掌握情况,及时调整教案,做到实践与理论相结合,在教学中还可以采用一些趣味的教学方法吸引学生的兴趣,将数学和游戏、生活相结合,加深学生的理解,将“条件概率”中的教学难点一一转化突破,最终培养出具有创造性思维的学生。

参考文献:

[1]金天寿.试谈条件概率的教学[J].数学通报,2012

[2]朱贤良.把握“缩减样本空间”突破《条件概率》难点[J].河北理科教学研究,2015endprint

猜你喜欢
高中数学
对提升高中数学课堂教学效率策略的思考
浅析如何构建高中数学高效课堂
高中数学一元二次含参不等式的解法探讨
高中数学新课程中函数的教学设计研究
试卷讲解有效实施的冷思考和研究
高中数学教学中的“情景—问题”教学模式研究
分层教学在高中数学中的研究
高中数学数列教学中的策略选取研究
调查分析高中数学课程算法教学现状及策略
基于新课程改革的高中数学课程有效提问研究