浅谈分类讨论思想在一次函数中的应用

2017-07-14 13:22张伟全
神州·下旬刊 2017年2期
关键词:一次函数分类讨论思想应用

摘要:分类讨论思想在中学教学中占据一个很重要的地位,一次函数对于解决生活中的实际问题起到重要作用,本篇论文主要论述分类讨论思想在一次函数中的应用。本篇论文主要有两个部分组成:浅谈分类讨论思想和分来讨论思想在一次函数中的具体应用。通过本篇论文,可以看出分类讨论思想在数学这一学科里是一种很实用的思想方法;一次函数为解决生活中的实际问题,提高生活质量,促进现代文明发展作出了很大的贡献;使用分类讨论思想能帮助人们学习理解一次函数。

关键词:分类讨论思想;一次函数;应用

当前,数学思想和数学思想方法多种多样。一个好的数学思想能轻松的解决生活中的实际问题,一种好的数学思想方法能便捷的使我们学习理解一个数学思想。本篇论文主要论述分类讨论思想和一次函数及分类讨论思想在一次函数中的应用。目前国内外论述分类讨论思想在一次函数中的应用的论文不胜枚举,大多都是从函数的概念、性质、图像、实际应用和解题需求这五个方面分类。首先,分类讨论思想是基本数学思想方法之一。它是一种解决生活中的实际问题的逻辑方法。合理地使用分类讨论思想,我们可以使繁琐的问题简单化,使解决问题的思路更有条理。分类讨论思想在教学中的应用实际就是“化整为零,各个击破”的教学策略。这也是为什么教材每个章节需要分各个小节。同时,分类讨论思想应用到数学教学中,有助于提高学生的逻辑性、条理性、概括性,对于培养学生严谨的科学态度和逻辑的数学思维有重要意义。使学生掌握分类讨论的思想方法有助于提高学生解题能力和分析问题的效绩。其次,一次函数是重要的几类函数之一,合理的利用好一次函数可以便捷的解决生产和生活中的诸多问题。近年来的考纲都有应用书本知识解决实际问题的考点,诸如成本最小化、经济效益最大化、方案最优化等等。可见掌握函数思想的重要性,因此学生应该学好一次函数。最后,学习一次函数常用到分类讨论的思想方法。分类讨论思想应用到一次函数中使教学思路更有条理,教学方案更清晰明了。

一、浅谈分类讨论思想

(一)分类讨论思想的起源

大家都知道数学思想方法的两大源头分别是中国的《九章算术》和古希腊的《几何原本》。随着古今学者的研究发展,数学思想方法已经出现了很多种。分类讨论思想方法就是众多的基本数学思想方法之一。

分类现象自古就存在。远古时期,人们收集到的食物会分类保存。能长时间保存的和不能长时间保存的、可以播种的和不能播种的植物,能圈养和不能圈养的动物。一个狩猎团体根据体质差异也有分工,行动敏捷的成员负责吸引猎物的注意力,身体壮实的负责对猎物造成伤害,臂力大的负责投掷标枪等等。现在分类现象随处可见,各种各样的职业共同推动社会发展,大小不一的零件使机器正常运行。正是因为分类思想,人们有条理的生活着,避免了很多的差错与混乱现象。分类思想是古老文明的基本思想。

司马迁编撰的《史记》 [1]卷六十五《孙子吴起列传第五》曾记载“田忌赛马”的故事,齐王与田忌赛马,双方按马的速度将马分为三等,齐王同等次的马的速度均高于田忌。田忌将马出场次序换位以下等马对齐王的上等马,以上等马对齐王的中等马,以中等马对齐王的下等马赢得比赛。田忌这种根据对方的马出场次序而相应的对自己的马出场次序作出调整的思想方法就是分类讨论思想。正是因为这一思想,田忌巧妙地赢得了比赛的胜利。为古代人的智慧史添上了绚丽的一笔。通过这个事例我们知道分类讨论思想的重要性,分类讨论思想其实与我们的生活息息相关。

现在已经有很多的学者专家都有总结分类思想的含义,在《数学思想方法教学研究导论》的第253页指出:“分类是基本的逻辑方法之一,数学中的分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法。分类以比较为基础,通过比较识别出数学对象之间的异同点,然后根据相同点将数学对象归并为较大的类,根据差异点将数学对象划分为较小的类,从而将数学对象区分为具有一定从属关系的等级系统。”

随着数学的发展,分类讨论思想方法逐渐演化成数学思想方法的主要思想方法之一。同时,也正使得数学这门学科使得分类思想方法更加地深化与细化。如今,分类讨论思想方法已经是中高考试中的常考点。

(二)分类讨论思想的概念界定

我们先了解分类讨论思想的汉语释义。“分类”一词在辞海中的释义为根据事物的特点分别归类。“讨论”一词在辞海中的释义为就某一问题进行商量或辩论。“思想”一词在辞海中指思维活动的结果,属于理性认识。从分类讨论思想的汉语释义可以知道分类讨论思想先分别归类再逐一商量讨论。

分类思想和分类讨论有什么区别与联系呢?按从属关系划分,分类讨论是一个种概念,分类思想是一个属概念。分类思想并不专属于数学领域,它是人们早期认识世界面貌、改善生活条件的一种思维形态,即把复杂的事物依据其种类、性质或品级进行划分或归类。分类讨论是分类思想实际应用的一种具体形式,它要求把事物进行划分归类,把分类的若干个种类进行逐一的研究讨论,最后把分类的若干讨论结果归纳总结。

在数学领域各学者对于分类讨论思想方法的概念界定几乎大同小异,对于分类讨论思想方法的概念几乎不存在争议。顾泠沅教授所著的《数学思想方法》有提到分类讨论这一思想方法。在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论思想,同时也是一种重要的解题策略,它体现化整为零、集零为整的思想与归类整理的方法。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,有关分类讨论思想的数学问题是比较繁琐复杂的,通常安排在解答题板块,所占分值比较高。所以在高考试题中占有重要的位置。

(三)分类讨论思想的分类原则与方法

分类讨论思想的分类原则:(1)所要分类的对象必须是确定的(2)分类出的各级内容必须是完整的,不能犯遗漏某一级这种错误(3)应该按同一标准分类(4)各个集域应当是互斥的,不出现重复的集域(5)分类必须逐级进行,不能越级分类。分类讨论思想的分类方法:明确分类讨论的对象,确定对象的所有内容,明確分类的标准,将对象正确进行分类;逐级进行讨论,获取阶段性结果,归纳小结,综合结论。endprint

三、分类讨论思想在一次函数中的应用

分类讨论思想在一次函数中的应用主要体现在一次函数的概念、性质、图像与实际应用这几个方面。

(一)分类讨论思想在一次函数概念方面的应用

如何来辨别一个函数关系是不是一次函数?前面已经给出了一次函数的概念。一般地。形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function).当y=kx+b中的k是变量或者x的指数是变量时,该变量取不同的值会有不同的结果,因此就需要是用分类讨论的思想方法逐一讨论。

那么我们来看这道例题:

例4 已知函数y=(m-5)x2m-1+3x-1,当m为何值时,该函数是一次函数?

分析:根据函数概念,本题应该分为三种情况讨论:当m-5=0时,函数是一次函数;当2m-1=1时,函数是一次函数;当2m-1=0时,函数是一次函数。综上所述,m=5或1或 。

(二)分类讨论思想在一次函数性质方面的应用

我们已经知道一次函数具有单调增减性,一次函数的增减性在生活中经常用到。一次函数要么递增要么递减,因此又是也需要用到分类讨论思想。

例5 一次函数y=kx+b,当2≤ x ≤ 4时,10≤ y ≤ 14。求的值。

分析:此题中一次函数的单调性尚不明确,因此需要分为两种情况讨论:

当函数单调递增时,即当x=5时,y=10,当x=4时,y=14,因此k=2, b=6

故=3,当函数是单调递减时,即当x=2时,y=14,当x=4时,y=10,因此k=-2, b=18故=-9。

(三)分类讨论在一次函数图像位置方面的应用

如果一次函数y=kx+b中的k或b不明确那么一次函数图像在平面直角坐标系中的位置也将不明确,因此很多时候需要用到分类讨论思想来解决相关问题。

例6 已知正比例函数y=x和一次函数y=kx+2的函数图像与x轴围成了一个面积为1的三角形,求一次函数的解析式。

分析:此题中一次函数的斜率并不明确,因此函数图像的位置需要分为两类。因为已经知道两个函数图像与x轴围成的三角形面积是1,且一次函数经过定点(0,2)根据斜率将一次函数分为递增和递减两类:当一次函数单调递增时,一次函数经过x轴上的点A(-1,0),一次函数解析式为y=2x+2;当一次函数单调递减时,一次函数经过x轴上的点E(2,0),一次函数的解析式为y=-x+2。所以总结两类讨论,一次函数的解析式为y=2x+2或y=1x+2。作图如图3.1和图3.2。

(四)分类讨论在一次函数实际问题方面的应用

一次函数应用到实际问题中已经是常考点,这使数学更贴近生活,培养学生灵活运用知识的能力。而在一些典型题型中常需要用到分类讨论思想。

例7 小明准备换电话卡,现在他已经了解了两种电话卡的套餐。A卡套餐为每月通话不超过100分钟,则按每分钟0.2元收费,若每月通话大于100分钟则超出时长按每分钟0.16元收费;B卡套餐为每月通话不超过200分钟按每分钟0.2元收费,若每月通话超过200分钟超出时长则按每分钟0.12元收费。如果小明每月通话 分钟,请问他该如何选择套餐最划算?

分析:此题尚不明确小明每月通话时长,因此需要分三种情况讨论:

当0≤ x ≤ 100时,显然两种卡消费一样。

当100≤ x ≤ 200时,A卡有优惠,B卡无优惠,因此选择A卡。

当x>200时,设A、B两卡消费分别为y1、y2。A卡消费为y1=0.16x+20,B卡消费为y2=0.12x+40,当y1=y2时,x=500因此又需要分三种情况讨论:当x=500时,A、B两卡消费一样,当200y1选A卡更划算,当x>500时,y1>y2选B卡更划算。

分类讨论思想这是数学基本思想方法之一。学生熟练掌握了这一思想方法,将更有逻辑有条理的分析处理问题。一次函数是最基本的函数,它对于解决实际生活生产需要有重要意义。教师在教学一次函数时应当科学的选取适当的教學方法,务必是学生理解掌握一次函数,并将其迁移到实际问题中去。

参考文献:

[1]司马迁,史记,北京联合出版社,2016.

[2]王鸿钧,孙宏安,数学思想方法引论,人民教育出版社,1992.

[2]义务教育课程标准教师学习指导,2011.

[3]数学八年级下册,人民教育出版社,2013.

[4]顾泠沅,数学思想方法,中央广播电视大学出版社,2004.

[5]潘兴伟,初中数学教与学,分类思想在一次函数中的应用,2015.

[6]姬梁飞,科教文汇,论分类讨论思想方法,2017.

[7]朱成杰,数学思想方法教学研究导论,文匯出版社,2001.

作者简介:张伟全(1994.07)男,汉,四川省南充市营山县,本科,学生,数学与应用数学。

猜你喜欢
一次函数分类讨论思想应用
例谈几何画板在一次函数应用题的教学尝试
分类讨论思想方法解决含参一元二次不等式问题
分类讨论思想在初中数学中的运用
简析分类讨论思想在高中数学教学中的应用
例谈分类讨论思想在函数单调性问题中的应用
试分析初中数学二元一次方程和一次函数的教学
GM(1,1)白化微分优化方程预测模型建模过程应用分析
煤矿井下坑道钻机人机工程学应用分析
气体分离提纯应用变压吸附技术的分析
会计与统计的比较研究