分类讨论思想在初中数学中的运用

2016-12-23 09:02王敏
读与写·教育教学版 2016年12期
关键词:分类讨论思想运用初中数学

王敏

摘 要:初中阶段是学生发展抽象思维的高峰期,而抽象思维中最典型的代表就是分类讨论思想,这是一种研究数学问题最基本的思想方法,也是解决部分初中数学题的重要策略。本文从与分类讨论思想有关的内容入手,分析分类讨论思想在初中数学教学中的可观性以及列举出分类讨论思想在初中数学中的具体应用,来提高学生解决数学问题的思维能力。

关键词:分类讨论思想 初中数学 运用

中图分类号:G633.6 文献标识码:C 文章编号:1672-1578(2016)12-0073-01

1 分类讨论思想在初中数学教学中的意义

分类讨论思想是一种抽象的思想,是一类解决数学问题的思维方式。它主要是将整体的数学概念转换为零散的小部分,全方位的解决各种数学问题,之后,又将零散的部分有条理地整合起来,得出有效可靠的总结。分类讨论思想符合学生初中阶段思维发展的特点,有效地帮助学生整理解决数学问题的思路,提高学生思考问题的思维能力、创新能力以及动手实践能力。分类讨论思想遵循“每级分类按同一标准进行、分类应逐级进行、同级互斥不得越级”的原则,通俗的说,就是数学题目中明确的对象要与讨论标准一致,要一步一步进行分类,要有层次地解决多次分类问题及相互矛盾的问题。在遵循原则的情况下,用分类讨论思想解决数学问题就具有一定的科学性,达到的发展能力效果也会更好。

2 分类讨论的具体步骤

在用分类讨论思想解决初中数学问题时,不仅要遵循以上三原则,保证解题流程的科学性、严谨性、全面性,还要依据分类讨论的具体步骤操作。分类讨论的主要有“1、明确分类对象;2、明确分类标准;3、逐类分类、分级得到阶段性结果;4、用该级标准进行检验筛选结果;5、归纳作出结论。”这5个具体操作步骤。具体地说,在做初中数学题之前,首先看清题目具体的要求,然后确定分类讨论目标并对其进行分类讨论,其次,对一些复杂的问题进行全面性研究并筛选出进一步分类讨论结果,接着,要对分类讨论的结果进行反复归纳总结,最后,综合得出所要结果。这几个步骤概括的说无非就是一个从确定分类讨论目标及标准到分析筛选问题结果,再到综合归纳总结出结果的过程。在遵循原则的前提下又根据具体步骤操作,数学问题才能更好地、更科学地、更全面地得到解决。

3 分类讨论思想在初中数学中的运用分析

3.1 初中数学函数中分类讨论思想的运用

函数在数学中是最为重要的一块,因此,初中教师更应把握这点,巩固并发展学生在函数这方面的思维。函数通常有一次函数、二次函数、反比例函数等之分,学生通过分类讨论思想就能很好地解决这一类问题。如例题,某年杭州市生产运营水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和家庭用水各多少立方米?这道题可用方程来解决,但本题的目的是培养学生的思维定性,所以应该用方程函数相结合的方法解决这一题。首先设生产经营用水x亿立方米,居民家庭用水y亿立方米,再根据题意列出方程:x+y=5.8,y=5.8-x;y=3x+0.6.接着通过作出量个一次函数的图像并曲其图像的交点,最后得出结论。

3.2 初中数学几何中分类讨论思想的运用

分类讨论思想在有关几何题目解决方面是很常见的,在学习三角形与特殊三角形定义及联系方面得知三角形的任意俩边之和大于第三边,等腰三角形有两边的长短相等、等边三角形三边的长短都相等的概念。如例题,已知三角形ABC周长为20厘米,AB=AC,其中一边边长是另一边边长的2倍,BC长多少?从这道题的已知条件可知,该题讨论的是有关等腰三角形三边关系的内容,这时学生应该回想教师课上所讲的相关知识,明白等腰三角形就是特殊的三角形,三角形的定义在等腰三角形上同样适用,然后开始分析题目。该题的解题思路有俩种情况,一种是AB=AC=2BC,即等腰三角形的俩等边是第三边的2倍,那么可以得出BC=4cm,AB=AC=8cm,可构成等腰三角形;另一种是BC=2AB=2AC,即等腰三角形的第三边是俩等边的2倍,那么可以得出BC=10cm,AB=AC=5cm,无法构成等腰三角形,因此答案只有第一种情况成立,4,4,8能构成等腰三角形的三边。

3.3 初中数学方程中分类讨论思想的运用

在初中数学学习方面,学生对方程比较难把握,不知如何在具体情况下利用方程解决数学问题,教师应在一旁主动分析并引导学生采用多角度、更全面地分析解决数学问题,学生也应有效采用分类讨论的思想科学、严谨地解决方成问题,从而解决数学问题。如例题,试比较1+a与1-a的大小。这道题可采用作差法来解题,两个数量的大小可以通过它们的差来判断。此时分为三个情况,第一种情况:当a大于0,2a大于0,即(1+a)-(1-a)大于0,1+a大于1-a。第二种情况:当a=0时,2a=0,即(1+a)-(1-a)=0,1+a=1-a。第三种情况:当a小于0时,2a小于0,即(1+a)-(1-a)小于0,1+a小于1-a。最终结果就分以上三种。可见,分类讨论思想在初中数学中涉及很多方面,不管是函数、几何、还是方程等方面都需要它。

4 结语

总而言之,分类讨论思想是一种抽象思维,是学生在初中学习数学阶段最应运用和发展的思维方式,它能提高学生解决数学问题的思维能力、创新能力以及实践能力,提高课堂效率以及听课质量,促进学生全方面的进步。

参考文献:

[1] 宋凤英.分类讨论思想——解数学问题重要思想之三[J].数学大世界(初中版 ),2013(04).

[2] 袁少建.分类讨论思想在初中数学解题教学中的运用[J].数学学习与研究,2015,(03).

[3] 刘海琴.分类讨论思想在初中数学解题中的应用[J].理科考试研究,2014,(5).

猜你喜欢
分类讨论思想运用初中数学
“赞赏发现”在高中语文教学中的运用
例谈数学教学中的“顿悟”
游戏教学法在小学英语课堂教学中的运用
初中数学高效课堂的创建策略
学案式教学模式在初中数学教学中的应用
培养团精神,开展合作学习