肿瘤相关巨噬细胞及其与实体肿瘤关系的研究进展

2017-04-19 03:41李腊梅胡章勇艳成都医学院第一附属医院成都610500
成都医学院学报 2017年2期
关键词:共培养生长因子结肠癌

李腊梅,胡章勇,周 艳成都医学院第一附属医院(成都 610500)

·综 述·

肿瘤相关巨噬细胞及其与实体肿瘤关系的研究进展

李腊梅,胡章勇,周 艳△
成都医学院第一附属医院(成都 610500)

肿瘤微环境;肿瘤相关巨噬细胞;实体肿瘤

肿瘤微环境是指肿瘤局部浸润的免疫细胞、间质细胞及其分泌的活性介质等与肿瘤细胞共同构成的局部内环境。其中,局部浸润的免疫细胞在肿瘤的发生发展和行为学特性征的形成方面发挥举足轻重的作用,既能诱导抗肿瘤免疫,从而清除肿瘤细胞,同时又能被肿瘤细胞募集而促进其生长[1]。免疫细胞种类繁多,肿瘤相关巨噬细胞(tumour associated macrophages, TAMs)就是其中一员,它们参与实体肿瘤的侵袭和转移、血管和淋巴管的形成和免疫抑制,并影响患者预后。

1 肿瘤部位巨噬细胞的募集与分化

1.1 肿瘤部位巨噬细胞的募集

肿瘤微环境中的肿瘤细胞和部分基质细胞能产生多种趋化因子和生长因子,上述细胞因子能募集血液循环系统中的单核细胞并促使其分化为巨噬细胞。在肿瘤组织中已发现多种趋化因子,如CCL5/RANTES、CXCL12/SDF-1和CXC3L1/fraktalkine,它们在单核细胞的募集和巨噬细胞的分化中发挥重要作用[2]。除此之外,生长因子和非典型趋化多肽,如血管内皮生长因子(vascular endothelial growth factor, VEGF)、转化生长因子β(transforming growth feactor-betal, TGF-β)、成纤维细胞生长因子(fibroblast growth factors, bFGF)、巨噬细胞集落刺激因子(macrophage colony-stimulating factor, M-CSF/CSF-1)、尿激酶纤溶酶原激活物(urokinase-type plasminogen activator, uPa)和抗菌肽β-防御素-3也参与单核细胞的募集和巨噬细胞的分化[3-5]。有研究[6-7]表明,在肺腺癌小鼠模型中,脾脏是TAMs的前体器官,且血管紧张素Ⅱ的过表达加快了巨噬祖细胞的更新。

1.2 肿瘤部位巨噬细胞的分化(图1)

募集至肿瘤微环境中的巨噬细胞具有分化不定性,依据微环境中不同的分子信息分化成截然相反的两种类型[8]。M1型(经典活化型)具有肿瘤抑制作用,由典型的Th1型细胞因子(如干扰素,interferon-γ,IFN-γ)联合微生物源物质(如脂多糖,lipopolysaccharide,LPS)诱导所致,以高表达Ⅱ型主要组织相容性复合物、白介素12(interleukin 12,IL-12)和诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)为特征[9],能产生效应分子活性氧(reavtive oxygen species, ROS)、反应性氮中间产物及IL-1β、IL-6和肿瘤坏死因子α(tumor necrosis factor α, TNF-α)等促炎因子,从而发挥抗肿瘤作用[10]。M1型巨噬细胞还能产生趋化因子CXCL9/Mig、CXCL10/IP10,募集Th1型淋巴细胞,从而发挥抗肿瘤作用[7]。

与M1型不同,M2型(选择活化型)由IL-4和IL-13诱导巨噬细胞沿着替代活化途径分化而成,以高表达IL-10,低表达iNOS和IL-12为特征,且抗原呈递性较差。M2型巨噬细胞可通过释放IL-10和TGF-β,抑制炎症调节及损伤修复,从而促进肿瘤生长[11]。M2型巨噬细胞还能产生CCL17/TARC、CCL22/MDC、CCL24/Eotaxin-2等趋化因子,参与募集调节性T细胞、嗜酸性粒细胞和嗜碱性粒细胞[12]。在体外实验中,转录因子C-MYC能调控M2型巨噬细胞相关基因,如SCARB1、ALOX15、MRC1等,从而促进M2型巨噬细胞分化[13]。在小鼠结肠癌模型中,组织蛋白酶S的缺失可诱导M2型巨噬细胞数量减少[14]。而另有研究[15]表明,细胞间黏附因子-1可通过减少肿瘤微环境中凋亡细胞的清除,从而抑制M2型巨噬细胞分化。细胞实验中,巨噬细胞和结肠癌细胞Caco 2共培养时,前胃泌素的表达可抑制M2型巨噬细胞分化[15]。TAMs的分化由多种因素调控,如肿瘤细胞的来源及类型、肿瘤来源的核外粒体和药物等。Lundholm等[16]发现,前列腺癌巨噬细胞浸润以M2型为主,而结肠癌以M1型为主。体外实验中,乳腺癌细胞与人外周血单核细胞共培养后使后者分化为M2型巨噬细胞,而结肠癌细胞与人外周血单核细胞共培养后却使其分化为M1型巨噬细胞[17]。此外,结肠癌的不同细胞系与THP-1共培养时也出现了不同结果,HT-29和HCT-15与THP-1共培养时,THP-1分化为M2型巨噬细胞,而Colo 205与THP-1共培养时,THP-1则分化为M1型巨噬细胞[18]。结肠癌细胞分泌的核外粒体也能影响巨噬细胞的分化类型。药物(如他喹莫德)治疗后,肿瘤区域浸润的M1型巨噬细胞数量增加,而M2型数量减少[19]。

图1 TAMs在不同微环境中的不同活化途径及其对肿瘤细胞的影响

2 巨噬细胞在实体肿瘤中的作用

2.1 TAMs与实体肿瘤侵袭和转移

TAMs能表达非蛋白类水解分子而影响肿瘤的侵袭和转移。在胰腺癌模型中,M2型巨噬细胞表达的组织蛋白酶活性增高可促进肿瘤细胞浸润[20]。小鼠卵巢癌和胰腺癌模型中,M2型巨噬细胞表达的清道夫受体A能促进肿瘤细胞的侵袭和转移[21]。此外,小鼠乳腺癌模型中,M2型巨噬细胞可上调半胱氨酸-组织蛋白酶B表达,从而促进乳腺癌肺转移[22]。

在胰腺癌患者中,巨噬细胞表达金属蛋白酶-2(matrix metalloproteinase,MMP-2)和MMP-9,可增加肿瘤细胞周围的血管浸润,从而促进胰腺癌细胞肝转移。在神经胶质瘤中,M2型巨噬细胞通过释放TGF-β,诱导胶质瘤细胞产生MMP-9,进而促进胶质瘤细胞侵袭[23]。从肺癌中分离的巨噬细胞为M2型,体外可促进肺癌细胞侵袭和转移[24]。在乳腺癌中,M2型巨噬细胞可通过抑制TGF-β/Sand3信号通路来激活Cxcr2,从而促进肿瘤的侵袭和转移[25]。当M2型巨噬细胞在含有纤维母细胞生长因子受体-1(fibroblast growth factor recportor 1, FGFR1)的乳腺上皮细胞的条件培养基中培养时,CXCR2受体的表达量增加,从而通过FGFR诱导肿瘤样乳腺上皮细胞形成并参与其最初的转移[25]。在细胞实验中,M2型巨噬细胞通过激活TLR2-Vit D3信号通路,促进卵巢癌细胞增殖和侵袭[26]。

对于结肠癌而言,巨噬细胞的分型及微环境中细胞因子的不同都将影响巨噬细胞对肿瘤细胞的作用。研究[27]表明,M2型巨噬细胞与结肠癌细胞SW480共培养时,SW480细胞的转移能力增强。Cui等[28]的研究也证明了M2型巨噬细胞数量及M2/M1的比值增加都会增强结肠癌细胞的肝转移。胱天蛋白酶通过激活NF-κB信号通路促进巨噬细胞向M2型分化,从而促进结肠癌肝转移[29]。而细胞间粘附分子-1通过抑制M2型巨噬细胞分化,从而抑制结肠癌转移。结肠癌细胞系SL4表达的CXCL16能诱导M1型巨噬细胞分化,通过分泌TNF-α诱导SL4细胞凋亡,从而抑制结肠癌肝转移[30]。

2.2 TAMs与实体肿瘤血管和淋巴管形成

研究[31]表明,TAMs还与肿瘤血管和淋巴管形成有关。从肺癌患者术后肿瘤组织中分离出的巨噬细胞,经分泌型磷脂酶A2诱导其分化为M2型,可产生血管内皮生长因子A(vascular endothelial growth factors A,VEGF-A)和VEGF-C,上述因子可促进肺癌的血管和淋巴管形成。免疫组织化学实验证明,人宫颈癌基质中的M2型巨噬细胞能产生VEGF-D,增加癌周淋巴管的密度。在体外实验中,TAMs分泌的血管生成因子磷酸化酶的代谢产物2-脱氧核糖能促进人脐静脉内皮细胞迁移[32]。M1型巨噬细胞则通过促进血管内皮细胞凋亡来抑制肿瘤血管形成[33]。

2.3 TAMs与免疫抑制

TAMs还参与肿瘤的免疫抑制。动物实验中,M2型巨噬细胞高表达Th2型细胞因子IL-10,通过抑制NF-κB信号通路,从而抑制免疫反应[29]。M2型巨噬细胞与卵巢癌细胞共培养能诱导清道夫受体A产生,使卵巢癌细胞产生免疫耐受[21]。M2型巨噬细胞还能通过产生L-精氨酸和胺类参与肿瘤的免疫抑制[34]。小鼠乳腺癌模型在低氧环境中,TAMs分化为M2型,通过表达低氧诱导因子(hypoxia-inducible factors),增强巨噬细胞抑制T细胞毒性的作用,从而发挥免疫抑制作用[35]。

3 TAMs与实体肿瘤预后的相关性

3.1 TAMs与不良预后

在胃癌、乳腺癌、胰腺癌等多种肿瘤中,TAMs与不良预后相关。研究[36]表明,在胃癌组织中,M2型巨噬细胞能使上皮组织出现间质化现象,即E-黏蛋白水平降低,而N-黏蛋白和波形蛋白水平升高,上述改变导致肿瘤具有高侵袭力和转移力,从而影响预后。在体外实验中,乳腺癌细胞MDA-MB-231能激活M2型巨噬细胞,其通过分泌TGF-α来促进乳腺癌转移[37]。胰腺癌来源的M2型巨噬细胞参与淋巴结转移、神经浸润及耐药形成,从而与不良预后相关[38]。M2型巨噬细胞在体外能促进前列腺癌迁移及内皮细胞血管形成,从而影响预后[39]。Okubo等[40]研究发现,M2型巨噬细胞在体外并不能促进口腔癌细胞增殖,但在口腔癌小鼠模型中却能促进肿瘤生长和放疗后肿瘤细胞的再生,从而降低患者生存率。

3.2 TAMs与良好预后

与不良预后相反,在结肠癌中,TAMs浸润增多则患者预后良好。Nebiker等[41]用基因芯片技术分析1 200例结肠癌患者的临床病理特征和总生存率发现,肿瘤微环境中浸润的巨噬细胞主要为M1型,它通过产生IL-12和TNF-α等促炎因子,抑制结肠癌细胞生长,改善患者预后。

3.3 TAMs与结肠癌的生长

在结肠癌患者中,微环境中TAMs的增多与良好预后相关的原因可能是M1型数量增多、M2型数量减少及M1/M2比值增大。M1型巨噬细胞能抑制肿瘤细胞生长,而M2型则促进肿瘤的发生与发展。研究[41]表明,经GM-CSF刺激的单核细胞能分化为M1型巨噬细胞,将此细胞与结肠癌细胞以10∶1的比例共培养时,对结肠癌细胞产生的抑制作用相当于30 μg/mL的5-氟尿嘧啶。另有研究[42]表明,用来自M1型巨噬细胞的条件培养基与结肠癌细胞HT-29共培养,后者出现细胞周期停滞,表现为S期细胞减少和G2/M期细胞增加。三磷酸鸟苷环化水解酶1(guanosine triphosphate cyclohydrolase, GCH1)也能促使巨噬细胞从M2型转变成M1型,从而通过直接杀伤肿瘤细胞、抑制血管生成及增强抗肿瘤免疫来抑制结肠癌生长[43]。结肠癌组织中的抗菌肽水平降低也能使M1型巨噬细胞数量增加,从而通过激活Wnt/β-catenin信号通路来抑制结肠癌细胞生长[44]。但肿瘤部位表达的组织蛋白酶S能通过引发TAMs的自噬而增加M2型巨噬细胞的分化,进而促进结肠癌细胞生长和转移[45]。

4 小结和展望

TAMs可以根据不同的微环境分化为两种功能截然相反的类型,从而对肿瘤的生长、浸润和转移、血管及淋巴管形成、免疫抑制以及预后等方面产生不同影响。但对于M1型巨噬细胞和M2型巨噬细胞对肿瘤细胞产生截然相反影响的分子机制以及TAMs对不同肿瘤预后影响的差异,目前还不完全清楚,有待进一步研究。

[1]Hanahan D, Weinberg R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.

[2]Allavena P, Mantovani A. Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment[J]. Clin Exp Immunol, 2012, 167(2): 195-205.

[3]Bierie B, Moses H L. Transforming growth factor beta (TGF-beta) and inflammation in cancer[J]. Cytokine Growth Factor Rev, 2010, 21(1): 49-59.

[4]Linde N, Lederle W, Depner S,etal. Vascular endothelial growth factor-induced skin carcinogenesis depends on recruitment and alternative activation of macrophages[J]. J Pathol, 2012, 227(1): 17-28.

[5]Reed J R, Stone M D, Beadnell T C,etal. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner[J]. PLoS One, 2012, 7(9): e45877.

[6]Cortez-Retamozo V, Etzrodt M, Newton A,etal. Origins of tumor-associated macrophages and neutrophils[J]. Proc Natl Acad Sci USA, 2012, 109(7): 2491-2496.

[7]Cortez-Retamozo V, Etzrodt M, Newton A,etal. Angiotensin II drives the production of tumor-promoting macrophages[J]. Immunity, 2013, 38(2): 296-308.

[8]Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122(3): 787-795.

[9]Mancino A, Lawrence T. Nuclear factor-kappaB and tumor-associated macrophages[J]. Clin Cancer Res, 2010, 16(3): 784-789.

[10] Bögels M, Braster R, Nijland P G,etal. Carcinoma origin dictates differential skewing of monocyte function[J]. Oncoimmunology, 2012, 1(6): 798-809.

[11] Bingle L, Brown N J, Lewis C E. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies[J]. J Pathol, 2002, 196(3): 254-265.

[12] Martinez F O, Gordon S, Locati M,etal. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression[J]. J Immunol, 2006, 177(10): 7303-7311.

[13] Pello O M, De Pizzol M, Mirolo M,etal. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology[J]. Blood, 2012, 119(2): 411-421.

[14] Yang M, Liu J, Shao J,etal. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization[J]. Molecular Cancer, 2014, 13(1): 43.

[15] Hernández C, Barrachina M D, Cosín-Roger J,etal. Progastrin represses the alternative activation of human macrophages and modulates their influence on colon cancer epithelial cells[J]. PLoS One, 2014, 9(6): e98458.

[16] Lundholm M, Hägglöf C, Wikberg M L,etal. Secreted Factors from Colorectal and Prostate Cancer Cells Skew the Immune Response in Opposite Directions[J]. Sci Rep, 2015, 5: 15651.

[17] Bögels M, Braster R, Nijland P G,etal. Carcinoma origin dictates differential skewing of monocyte function[J]. Oncoimmunology, 2012, 1(6): 798-809.

[18] Wu T H, Li Y Y, Wu T L,etal. Culture supernatants of different colon cancer cell lines induce specific phenotype switching and functional alteration of THP-1 cells[J]. Cell Immunol, 2014, 290(1): 107-115.

[19] Olsson A, Nakhlé J, Sundstedt A,etal. Tasquinimod triggers an early change in the polarization of tumor associated macrophages in the tumor microenvironment[J]. J Immunother Cancer, 2015, 3:53.

[20] Gocheva V, Wang H W, Gadea B B,etal. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion[J]. Genes Dev, 2010, 24(3): 241-255.

[21] Neyen C, Plüddemann A, Mukhopadhyay S,etal. Macrophage scavenger receptor a promotes tumor progression in murine models of ovarian and pancreatic cancer[J]. J Immunol, 2013, 190(7): 3798-3805.

[22] Vasiljeva O, Papazoglou A, Krüger A,etal. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer[J]. Cancer Res, 2006, 66(10): 5242-5250.

[23] Ye X Z, Xu S L, Xin Y H,etal. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-β1 signaling pathway[J]. J Immunol, 2012, 189(1): 444-453.

[24] Wang R, Zhang J, Chen S,etal. Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression[J]. Lung Cancer, 2011, 74(2): 188-196.

[25] Bohrer L R, Schwertfeger K L. Macrophages promote fibroblast growth factor receptor-driven tumor cell migration and invasion in a CXCR2-dependent manner[J]. Mol Cancer Res, 2012, 10(10): 1294-1305.

[26] Li D, Wang X, Wu J L,etal. Tumor-produced versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and vitamin D3 signaling to promote ovarian cancer progression in vitro[J]. PLoS One, 2013, 8(2): e56616.

[27] Zhang Y, Sime W, Juhas M,etal. Crosstalk between colon cancer cells and macrophages via inflammatory mediators and CD47 promotes tumour cell migration[J]. Eur J Cancer, 2013, 49(15): 3320-3334.

[28] Cui Y L, Li H K, Zhou H Y,etal. Correlations of Tumor-associated Macrophage Subtypes with Liver Metastases of Colorectal Cancer[J]. Asian Pac J Cancer Prev, 2013, 14(2): 1003-1007.

[29] Yang M, Shao J H, Miao Y J,etal. Tumor cell-activated CARD9 signaling contributes to metastasis-associated macrophage polarization[J]. Cell Death Differ, 2014, 21(8): 1290-1302.

[30] Kee J Y, Ito A, Hojo S,etal. CXCL16 suppresses liver metastasis of colorectal cancer by promoting TNF-α-induced apoptosis by tumor-associated macrophages[J]. BMC Cancer, 2014, 14: 949.

[31] Granata F, Frattini A, Loffredo S,etal. Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2[J]. J Immunol, 2010, 184(9): 5232-5241.

[32] Hotchkiss K A, Ashton A W, Klein R S,etal. Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration[J]. Cancer Res, 2003, 63(2): 527-533.

[33] Schmidt T, Carmeliet P. Blood-vessel formation: Bridges that guide and unite[J]. Nature, 2010, 465(7299): 697-699.

[34] Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism[J]. Nat Rev Immunol, 2005, 5(8): 641-654.

[35] Doedens A L, Stockmann C, Rubinstein M P,etal. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression[J]. Cancer Res, 2010, 70(19): 7465-7475.

[36] Zhang J, Yan Y, Yang Y,etal. High Infiltration of Tumor-Associated Macrophages Influences Poor Prognosis in Human Gastric Cancer Patients, Associates With the Phenomenon of EMT[J]. Medicine (Baltimore), 2016, 95(6): e2636.

[37] Hollmén M, Karaman S, Schwager S,etal. G-CSF regulates macrophage phenotype and associates with poor overall survival in human triple-negative breast cancer[J]. OncoImmunology, 2015, 5(3): e1115177.

[38] Cui R, Yue W, Lattime E C,etal. Targeting tumor-associated macrophages to combat pancreatic cancer[J]. Oncotarget, 2016,7(31):50735-50754.

[39] Wang Z, Xu L, Hu Y,etal. miRNA let-7b modulates macrophage polarization and enhances tumor-associated macrophages to promote angiogenesis and mobility in prostate cancer[J]. Sci Rep, 2016, 6: 25602.

[40] Okubo M, Kioi M, Nakashima H,etal. M2-polarized macrophages contribute to neovasculogenesis, leading to relapse of oral cancer following radiation[J]. Sci Rep, 2016, 6: 27548.

[41] Nebiker C A, Han J, Eppenberger-Castori S,etal. GM-CSF Production by Tumor Cells Is Associated with Improved Survival in Colorectal Cancer[J]. Clin Cancer Res, 2014, 20(12): 3094-3106.

[42] Engström A, Erlandsson A, Delbro D,etal. Conditioned media from macrophages of M1, but not M2 phenotype, inhibit the proliferation of the colon cancer cell lines HT-29 and CACO-2[J]. Int J Oncol, 2014, 44(2): 385-392.

[43] Pickert G, Lim H Y, Weigert A,etal. Inhibition of GTP cyclohydrolase attenuates tumor growth by reducing angiogenesis and M2-like polarization of tumor associated macrophages[J]. Int J Cancer, 2013, 132(3): 591-604.

[44] Li D, Liu W, Wang X,etal. Cathelicidin, an antimicrobial peptide produced by macrophages, promotes colon cancer by activating the Wnt/β-catenin pathway[J]. Oncotarget, 2015, 6(5): 2939-2950.

[45] Yang M, Liu J, Shao J,etal. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization[J]. Molecular Cancer, 2014, 13(1): 43.

http://www.cnki.net/kcms/detail/51.1705.R.20161207.1050.010.html

10.3969/j.issn.1674-2257.2017.02.026

R73

A

△通信作者:周艳,E-mail:ZQLVZY319@163.com

猜你喜欢
共培养生长因子结肠癌
BMSCs-SCs共培养体系联合异种神经支架修复大鼠坐骨神经缺损的研究
紫锥菊不定根悬浮共培养中咖啡酸衍生物积累研究
MicroRNA-381的表达下降促进结肠癌的增殖与侵袭
表皮生长因子对HaCaT细胞miR-21/PCD4的表达研究
腹腔镜下横结肠癌全结肠系膜切除术的临床应用
结肠癌切除术术后护理
胃癌组织中成纤维细胞生长因子19和成纤维细胞生长因子受体4的表达及临床意义
腹腔镜下结肠癌根治术与开腹手术治疗结肠癌的效果对比
鼠神经生长因子修复周围神经损伤对断掌再植术的影响
角质形成细胞和黑素细胞体外共培养体系的建立