包含切比雪夫多项式的循环矩阵行列式的计算

2016-12-21 09:24师白娟
纯粹数学与应用数学 2016年3期
关键词:比雪夫行列式表达式

师白娟

(西北大学数学学院,陕西 西安 710127)

包含切比雪夫多项式的循环矩阵行列式的计算

师白娟

(西北大学数学学院,陕西 西安 710127)

行首加r尾r右循环矩阵和行尾加 r首r左循环矩阵是两种特殊类型的矩阵,这篇论文中就是利用多项式因式分解的逆变换这一重要的技巧以及这类循环矩阵漂亮的结构和切比雪夫多项式的特殊的结构,分别讨论了第一类、第二类切比雪夫多项式的关于行首加r尾r右循环矩阵和行尾加r首r左循环矩阵的行列式,从而给出了行首加r尾r右循环矩阵和行尾加r首r左循环矩阵的行列式显式表达式.这些显式表达式与切比雪夫多项式以及参数r有关.这一问题的应用背景主要在循环编码,图像处理等信息理论方面.

行首加r尾r右循环矩阵;行尾加r首r左循环矩阵;第一类切比雪夫多项式;第二类切比雪夫多项式;行列式

1 引言

循环矩阵类在许多学科中有很重要的应用[1-11],例如图像处理,通信,信号处理,编码,预处理等.P.Davis和江兆林教授已经为其研究奠定了深厚的基础.近几年内循环矩阵的探究已经延伸到很多方面,成为了活跃的研究课题.循环矩阵是其另外的自然延伸,有广泛的应用,特别是在广义循环码方面.xn-rx-r-循环矩阵被称为行首加r尾r右循环矩阵,简记为RFPrLrR循环矩阵,比一般的f(x)-循环矩阵有更好的结构和性质,所以求解RFPrLrR循环线性系统有更好的快速算法.

在这篇论文中,主要考虑切比雪夫多项式的关于行首加r尾r右循环矩阵和行尾加r首r左循环矩阵的行列式.由切比雪夫多项式的特征给出了行列式的显式表达式,这里所运用的技巧正是多项式因式分解的逆变换.首先,我们介绍了行首加r尾r右循环矩阵和行尾加r首r左循环矩阵的定义和切比雪夫多项式的特征性质;然后,我们呈现出主要的结果和详细过程.

2 预备知识

3 主要结果

先考虑第一类切比雪夫多项式Tn的关于行首加r尾r右循环矩阵,行尾加r首r左循环矩阵的行列式,主要结论如下:

4 定理3.1的证明

5 定理3.2的证明

6 定理3.3的证明

7 定理3.4的证明

参考文献

[1]Davis P.Circulant Matrices[M].New York:Wiley,1979.

[2]江兆林,周志伟.循环矩阵[M].成都:成都科技大学出版社,1999.

[3]David C.Regular representations of semisimple algebras,separable field extensions,group characters,generalized circulants,and generalized cyclic codes[J].Linear Algebra Application,1995,218:147-183.

[4]Jiang Zhaolin,Xu Zongben.Efficient algorithm for finding the inverse and group inverse of FLS r-circulant matrix[J].Applied Mathematics and Computation,2005,18(1/2):45-57.

[5]Tian Zhiping.Fast Algorithms for Solving the Inverse Problem of Ax=b[J].International Journal of Algebra,2011,9:121-124.

[6]Jiang Zhaolin.Fast Algorithms for Solving FLS r-Circulant Linear Systems[J].2012,2012:141-144.

[7]Li Juan,Jiang Zhaolin,Shen Nuo.Explicit determinants of the Fibonacci RFPLR circulant and Lucas RFPLL circulant matrix[J].Algebra Number Theory Application,2013,28(2):167-179.

[8]Jiang Zhaolin,Li Juan,Shen Nuo.On the explicit determinants of the RFPLR and RFPLL circulant matrices involving Pell numbers in information theory[J].Information Computing and Applications,2012,308:364-370.

[9]Tian Zhiping.Fast algorithm for solving the first plus last circulant linear system[J].Shandong University Natural,2011,46(12):96-103.

[10]Jiang Zhaolin,Shen Nuo,Li Juan.On the explicit determinants of the RFMLR and RLMFL circulant matrices involving Jacobsthal numbers in communication[J].Wseas Transactions on Mathmatics,2013,12:42-53.

[11]Tian Zhiping.Fast algorithms for solving the inverse problem of AX=b in four different families of patterned matrices[J].Applied Mathematics and Computation,2011,52:1-12.

[12]Jaiswal.On determinants involving generalized Fibonacci numbers[J].Fibonacci Quarterly,1969,7:319-330.

[13]Zhang Wenpeng.On Chebyshev polynomials and Fibonacci numbers[J].Fibonacci Quarterly,2001,35(3):424-428.

Determinants of RFPrLrR circulant matrices of the Chebyshev polynomials

Shi Baijuan
(College of Mathematics,Northwest University,Xi′an 710127,China)

In this paper,two new kind of circulant matrices,i.e.,the RFPrLrR circulant matrix and the RLPrFrL circulant matrix over the complex field C are considered respectively.The determinants of RFPrLrR circulant matrices and RLPrFrL circulant matrices of the Chebyshev polynomials are given by using the inverse factorization of polynomial.The calculation problem of a class determinant involving Chebyshev Polynomials are solved by using the combinatorial method and algebraic manipulations.

Chebyshev polynomials,RFPrLrR circulant matrix,RLPrFrL circulant matrix,determinant

O177.91

A

1008-5513(2016)03-0305-13

10.3969/j.issn.1008-5513.2016.03.009

2016-02-26.

国家自然科学基金(11371291).

师白娟(1992-),硕士生,研究方向:数论.

2010 MSC:60B12

猜你喜欢
比雪夫行列式表达式
范德蒙德行列式在行列式计算中的应用
行列式解法的探讨
一个混合核Hilbert型积分不等式及其算子范数表达式
表达式转换及求值探析
浅析C语言运算符及表达式的教学误区
第四类切比雪夫型方程组的通解
基于方差的切比雪夫不等式的推广及应用
加项行列式的计算技巧
基于切比雪夫有理逼近方法的蒙特卡罗燃耗计算研究与验证
切比雪夫多项式零点插值与非线性方程求根