奇异三阶积分边值问题正解的全局分歧

2016-12-21 09:23沈文国
纯粹数学与应用数学 2016年3期
关键词:基础学科边值问题三阶

沈文国

(兰州工业学院基础学科部,甘肃 兰州 730050)

奇异三阶积分边值问题正解的全局分歧

沈文国

(兰州工业学院基础学科部,甘肃 兰州 730050)

研究带Riemann-Stieltjes积分边值条件的奇异三阶积分边值问题正解的全局分歧结构.首先,利用相关文献,获得了此类问题的格林函数并推证其满足的性质,同时可获得此类问题等价于一个全连续算子方程;其次,在满足所给的条件时,利用Krein-Rutmann定理建立了此类问题对应的线性问题存在简单的主特征值;最后,当非线性项在零和无穷远处满足非渐进线性增长条件、参数满足不同范围的值时,利用Dancer全局分歧定理、Zeidler全局分歧定理和序列集取极限的方法,建立了此类问题正解的全局结构,进而获得了正解的存在性.

奇异三阶积分边值问题;全局分歧;正解

1 引言

2009年,文献[1]研究了下列三阶非局部边值问题:

受上述文献的启发,本文研究下列奇异三阶积分边值问题:

正解的全局分歧结构,其中a(t)在t=0和t=1处具有奇异性,r∈(0,∞)是一个参数,

注 1.1对于用分歧技巧研究其它的正解和结点解的存在性和多解性,可参考文献[10-16].

2 格林函数的性质及推论

3 预备知识

4 主要结果

[1]Graef J R,Webb J R L.Third order boundary value problems with nonlocal boundary conditions[J]. Nonlinear Anal.,2009,71:1542-1551.

[2]Graef J R,Yang B.Positive solutions of a third order nonlocal boundary value problem[J].Discrete Contin. Dyn.Syst.Ser.,2008,1:89-97.

[3]Du Z,Lin X,Ge W.Solvability of a third-order nonlocal boundary value problem at resonance[J].Acta Math.Sinica(Chin.Ser.),2006,49:87-94.

[4]Li S.Positive solutions of nonlinear singular third-order two-point boundary value problem[J].J.Math. Anal.Appl.,2006,323:413-425.

[5]Sun Y.Positive solutions of singular third-order three-point boundary value problem[J].J.Math.Anal. Appl.,2005,306:589-603.

[6]Liu Z,Umeb J S,Kang S M.Positive solutions of a singular nonlinear third order two-point boundary value problem[J].J.Math.Anal.Appl.,2007,326(1):589-601.

[7]Du Z,Ge W,Zhou M.Singular perturbations for third-order nonlinear multi-point boundary value problem[J]. J.Differential Equations,2005,218(1):69-90.

[8]Ma R,An Y.Global structure of positive for superlinear second-order m-point boundary value problems[J]. Nonlinear Anal.,2009,34(2):279-290.

[9]Shen W,He T.Global Structure of Positive Solutions for a Singular Fourth-Order Integral Boundary Value Problem[J].Discrete Dynamics in Nature and Society Volume 2014,Article ID 614376,7 pages.

[10]Rynne B P.Infinitely many solutions of superlinear fourth order boundary value problems[J].Topol. Methods Nonlinear Anal.,2002,19(2):303-312.

[11]Ma R,Nodal Solutions for a fourth-Order two-order boundary value problem[J].J.Math.Anal.Appl.,2006,314(1):254-265.

[12]Shi J,Wang X.On global bifurcation for quasilinear elliptic systems on bounded domains[J].J.Differential Equations,2009,246:2788-2812.

[13]Shen W.Global structure of nodal solutions for a fourth-order two-point boundary value problem[J].Appl. Math.Comput.,2012,219(1):88-98.

[14]Dai G,Ma R.Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian[J].J.Differential Equations,2012,252:2448-2468.

[15]Dai G.Bifurcation and nodal solutions for p-Laplacian problems with non-asymptotic nonlinearity at 0 or∞[J].Appl.Math.Lett.,2013,26:46-50.

[16]Dai G,Ma R.Unilateral global bifurcation for p-Laplacian with non-p-1-lineariza-tion nonlinearity[J]. Discrete contin.dyn.syst.,2015,35(1):99-116.

[17]Krasnosel′skii M A.Positive Solutions of Operator Equations[M].The Netherlands:P.Noordhoff Ltd.,1964.

[18]Zhang G,Sun J.Positive solutions of m-point boundary value problems[J].J.Math.Anal.Appl.,2004,291:406-418.

[19]Guo D,Sun J.Nonlinear Integral Equations[M].Ji′nan:Shandong Science and Technology Press,1987(in Chinese).

[20]Whyburn G T.Topological Analysis[M].Princeton:Princeton University Press,1958.

[21]Dancer E.Global solutions branches for positive maps[J].Arch.Rat.Mech.Anal.,1974,55:207-213.

[22]Zeidler E.Nonlinear Functional Analysis and its Applications:I.Fixed Point Theorems[M].New York:Springer-Verlag,1986.

[23]Ambrosetti A,Calahorrano R M,Dobarro F R.Global branching for discontinuous problems[J].Comment. Math.Univ.Carolin.,1990,31:13-222.

Global bifurcation of positive solutions for singular third order problems involving Stieltjes integral conditions

Shen Wenguo
(Department of Basic Courses,Lanzhou Institute of Technology,Lanzhou 730050,China)

In this paper,we establish global bifurcation structure of positive solutions for a class of singular third-order boundary value problems.Firstly,according to the relevant literature,we obtain that the Green fuction and its property for the above problem.Meanwhile,we can obtain that the above problem is equivalent to the completely continuous operator equation.Secondly,we have that the above linear problem exists simple principal eigenvalue by the Krein-Rutman theorem.Finally,we establish the global bifurcation structure of positive solutions with non-asymptotic nonlinearity at or by Dancer and Zeidler global bifurcation theorems and the approximation of connected components.

third order singular boundary problems,global bifurcation,positive solutions

O175.8

A

1008-5513(2016)03-0221-14

10.3969/j.issn.1008-5513.2016.03.001

2015-05-27.

国家自然科学基金(11561038);甘肃省自然科学基金(145RJZA087).

沈文国(1963-),博士,教授,研究方向:非线性微分方程与分歧理论.

2010 MSC:34B09,34C10,34C23

猜你喜欢
基础学科边值问题三阶
三阶非线性微分方程周期解的非退化和存在唯一性
以战略远见促进基础学科人才培养
临界Schrödinger映射非齐次初边值问题的有限差分格式
带有积分边界条件的奇异摄动边值问题的渐近解
新型三阶TVD限制器性能分析
巧填三阶幻方
临床医院培养基础学科研究生的探索与思考
三阶微分方程理论
非线性m点边值问题的多重正解
对中医临床基础学科属性的认识