王芳,王亚,翟成波
(1.山西大学数学科学学院,山西 太原 030006;2.南阳信息工程学校,河南 淅川 474450)
半序积空间中新的不动点定理
王芳1,王亚2,翟成波1
(1.山西大学数学科学学院,山西 太原 030006;2.南阳信息工程学校,河南 淅川 474450)
使用半序理论,h-序差和变距离函数的性质,在半序积Banach空间上讨论了一类没有凹凸性的单调算子,得出新的不动点存在唯一性结果,推广了文献中相关的不动点定理.
积空间;单调算子;正规锥;h-序差;变距离函数
近年来,对半序空间中非线性算子不动点的研究相当活跃,尤其是单调算子的研究获得了许多较好的结果,见文献[1-13].大多数文献利用算子的凹凸性及单调迭代技巧,得到了算子存在唯一不动点的结论.其中的凹凸性起着重要的作用.本文利用半序理论,h-序差的性质和变距离函数的特点来研究积空间中的单调算子,给出不动点的存在唯一性结论,其中的单调算子没凹凸性的要求.进而得到半序积Banach空间中单调算子存在唯一不动点的新结果,本质上推广了文献中的相关结论.
设X是实 Banach空间,θ表示 X中的零元.非空凸闭集 K⊂X是一个锥,“≤”是由K引出的半序,即∀x,y∈X.若y-x∈K,⇐⇒x≤y.设x,y∈X,x≤y,定义序区间 [x,y]={z∈E|x≤z≤y}.锥 K称为是正规的,如果存在常数 N >0,使得θ≤x≤y⇒‖x‖≤N‖y‖,称最小的N为K的正规常数.若x≤y,有Tx≤Ty(Tx≥Ty),则称算子T:K→K是增算子(减算子).积空间X×X也是实Banach空间,其中半序关系为:
这些概念可见文献[15].
本节考虑积空间中的单调算子,给出一类单调算子不动点的存在唯一结论.
注 2.2在文献[13]中的定理2.3中,所给条件(i)不能推得G满足推论2.1的条件,因而文献[13]中的定理2.3是不正确的.
[1]Guo D.Positive fixed points and eigenvectors of noncompact decreasing operators with applications to nonlinear integral equations[J].Chin.Ann.Math.Ser.B,1993,4:419-426.
[2]Sun J X,Zhao Z Q.Fixed point theorems of increasing operators and applications to nonlinear integrodifferential equations with discontinuous terms[J].J.Math.Anal.Appl.,1993,175:3-45.
[3]Li K,Liang J,Xiao T J.A fixed point theorem for convex and decreasing operators[J].Nonlinear Anal.,2005,63:e209-e216.
[4]Zhao Z Q,Du X S.Fixed points of generalized e-concave(generalized e-convex)operators and their applications[J].J.Math.Anal.Appl.,2007,334:1426-1438.
[5]Liang Z D,Lian X G,Zhang M Y.A class of concave operators with applications[J].Nonlinear Anal.,2008,68:2507-2515.
[6]Li X C,Wang Z H.Fixed point theorems for decreasing operators in ordered Banach spaces with lattice structure and their applications[J].Fixed Point Theory Appl.,2013,18:1-6.
[7]Wang W X,Liu X L.Positive solutions of operator equations and nonlinear beam equations with a perturbed loading force[J].Wseas Transactions on Mathematics,2012,3(11):252-261.
[8]Sang Y B,Wei Z L,Dong W.The existence of multiple fixed points for the sum of two operators and applications[J].Fixed Point Theory,2012,13(1):193-204.
[9]Zhai C.B,Guo C.M.On α-convex operators[J].J.Math.Anal.Appl.,2006,316:556-565.
[10]Zhai C B,Cao X M.Fixed point theorems for τ-φ-concave operators and applications[J].Comput.Math. Appl.,2010,59:532-538.
[11]Zhai C B,Yang C,Zhang X.Positive solutions for nonlinear operator equations and several classes of applications[J].Math.Z.,2010,266:43-63.
[12]栾辉.非紧非连续单调算子新不动点定理[J].南昌工业学报,2012,31(6):5-7.
[13]王维娜,薛西峰,一类单调算子的新不动点定理[J].纯粹数学与应用数学,2014,30(3):292-298.
[14]Khan M S,Swaleh M,Sessa S.Fixed point theorems by altering distances between the points[J].Bull. Aust.Math.Soc.,1984,30:1-9.
[15]郭大钧.非线性分析中的半序方法[M].济南:山东科学技术出版社,2000.
New fixed point theorems in ordered product spaces
Wang Fang1,Wang Ya2,Zhai Chengbo1
(1.School of Mathematics,Shanxi University,Taiyuan 030006,China;2.Information engineering school of Nanyang,Henan,Xichuan 474450,China)
By using partially ordering theory and some properties of h-ordering differences,altering distance function,a class of monotone operator without concavity or convexity has been discussed in ordered Banach product spaces.Some new theorems about uniquness and existence of fixed points have been obtained,which extend some related conclusions in literature.
product space,monotone operator,normal cone,h-ordering difference,altering distance function
O177.91
A
1008-5513(2016)03-0288-08
10.3969/j.issn.1008-5513.2016.03.007
2016-04-18.
国家青年科学基金(11201272);山西省自然科学基金(2015011005);2015山西省131人才项目.
王芳(1990-),硕士生,研究方向:非线性泛函分析.
翟成波.
2010 MSC:47H10