郭军
【摘要】文章根据数学的特点以及大学数学教育的目标,从数学认知的角度,提出了“立体的数学认知”这一教育理念与方法,并从教师示范作用,教材的与时俱进性,教学内容与方法,课外活动的开展等四个方面说明这种方法的必要性与实施办法.
【关键词】数学教育;数学认知;立体数学
数学是研究现实世界中的数量关系和空间形式的科学,并且现代数学的研究早就超出了“数”与“形”的范畴.这种“数”和“形”是事物存在的一种自然属性,反映了事物的内在联系与本质特征.然而它们的“表现”往往不是客观世界中直观的、具体的对象,这决定了数学具有高度抽象性的特点.根据数学知识体系的发展规律和人对数学的认知规律来培养学生的数学素质与能力.大学数学教育不仅仅是数学知识的教授,在要求学生系统的掌握数学知识的同时,更应该注重数学思想、数学品质、数学能力的学习与培养.让学生在学习的过程中,学会从数学的角度来抽象出数学问题,合理的建立数学模型;运用数学的知识和工作来分析、推理、论证,并得到确切的结论;最后通过实验来验证结论的正确性,从而创造性的解决问题.简而言之,数学素质,就是人们运用数学观察和处理问题的意识和能力.李大潜院士认为大学数学应达到如下教学目标:1.对数学这个学科有一个正确的认识和理解,对数学的重要性,对数学在推进人类社会物质文明与精神文明发展方面的重要作用,对数学是一种先进的文化,包括对数学带来的美感,有一个基本的认同和体会.2.能逐步领会到数学的精神实质和思想方法,在潜移默化中积累起一些优良的素质.3.不仅积累数学的知识和方法,掌握必要的工具和技巧,而且提高将数学有效地用于解决现实世界中种种实际问题的自觉性和主动性,并具备一定的数学能力.本质上李大潜也是将数学素质的培养作为大学数学教育的培养目的,这种素质其实就是一种科学创新的素质.
数学教育策略顶层设计,是提出一种“立体的数学认识”教育方法,并希望这种方法在一定程度上能够有效的解决一些数学教育上存在的问题,并在实践中取得好的效果.我们希望这种方法能有效激发学生的认知兴趣,能发挥学生的主观能动性,能促使学生形成优良的数学认知结构;同时也希望这种方法也能培养学生的数学思维和素养,使学生具备一定的观察、分析、解决问题的综合能力.据作者所知,现在有一些“立体化教学”的教学实验和研究成果主要是在数学教学方面作出的努力和改进,其中浙江科技学院的薛有才老师对工科院校大学数学的教学改革作了理论与实践上的探索,创立了“大学数学立体化课程教学模式”.这种多样性、分层次、个性化的立体式课程教学模式对发展学生个性、促进学生发展和全面提高高等学校教学质量是一条有效途径.我们从学生的认知角度出发,提倡“立体的数学认知”,主要立足于数学教育,而不仅仅是数学教学层面.
“立体的数学认知”方法包含以下几个层面:
1.发挥教师的认知示范作用.教师是教育的主导者和数学认知与实践的先行者,教师在教授学生数学知识的过程中所展现出来的理性思维,数学视角,问题的探讨与解决等等行为都会直接影响学生对数学的理解和感悟.所以首先要提高教师的综合素质,加强教学团队建设,这样才能给学生作出示范与指导.教师不仅需要系统而理解深刻的专业知识,还需要数学教育与教学理论、知识与技能.教师应在教学内容的把握,教学活动的设计、开展,教学理念的具体实施,培养学生的数学思维与能力方面做到胸中有数.事实上,大学教师往往都在专业知识上具有较高的理论水平,而在教学水平与能力上有所不足,这不利于学生的发展与培养.因此,大学教师应加强职业培训,特别是教育、教学的理论与实践的学习.教学团队的建设对优化教师整体结构,改革教学内容和方法,开发教学资源,促进教学研讨和教学经验交流,推进教学工作的传、帮、带和老中青相结合,提高教师的教学和科研水平都有很好的效果.
2.认知材料应反应时代要求.好的教材和教学资料不仅要传递学生数学知识,到达培养学生的目的,还应该符合学生的认知心理.教材的选取应注重数学概念的实际背景与几何直观的引入,强调数学的思想和方法,紧密联系实际,服务专业课程,精选一些实际应用案例.教学内容要体现数学的实用性,使数学的科学价值、文化价值、思想价值、应用价值展现出来.教材的内容不应过分强调理论的科学性、严谨性和系统性,而忽视了基本概念的应用背景和对学生创新能力的培养.
3.激活主体的认知能动性,渗透数学思想和文化于认知体验中.人的认知活动应充分调动智力因素与非智力因素,发挥主体认知的积极性,把握认知对象的本质思想与精神实质,才能构建良好的认识结构,具备认知的可创造性与可持续性.作者认为应采用多层次的分班教学以适应不同层次学生的需要,充分利用现代教育技术,网络优质资源使学生从多方面,不同角度学到不一样的数学知识.教学活动的展开应以学生为本,转变以学科为中心、片面重视专业教育的思想,树立专业教育与人文教育并重的思想,采用灵活多样的教学手段与方法激发学生的主体认知意识,呈现数学问题的脉络,认识数学思想的本质,感受数学文化的魅力.课堂教学方法科学,教学手段先进,重视实验、实践性教学,引导学生进行研究性学习和创新性实验,培养学生发现、分析和解决问题的兴趣和能力.教师不仅要教授学生数学知识,训练学生的数学思维,更要培养学生的探索精神与实践能力.使得学生从“数学现实”出发,在教师的帮助下自己动手、动脑做数学,用观察、模仿、实验、猜测等手段收集资料,获得体验,并作类比、分析、归纳,渐渐达到数学化、严格化和形式化.在课程的设置上,除了专业课外应加强数学实验、数学文化、数学竞赛等课程的学习与辅导.讲授内容还需与经济发展适度的相结合,做到了解学科、行业现状,追踪学科前沿,及时更新教学内容.
4.丰富认知活动,提高认知的迁移性与可发展性.丰富多样的课外数学学习活动,不仅是教学活动的补充,而且是全面提高学生的数学素质的必要途径,有利于学生形成“立体的数学认知”.全面实行“导师制度”,让学生能够享受教师的全面指导,做到个性化教育.导师要与学生保持良好的交流与沟通,以便及时了解学生的思想状况、对学生的学习作出指导并给出合理的建议.鼓励学生采取小组学习的模式,组员之间分工明确、互相协作共同探讨数学问题,按时完成任务.支持学生参加数学建模活动,数学建模是沟通数学理论与实际问题的中介和桥梁,培养学生数学建模能力是提高数学思维和应用能力的重要手段,使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们学习数学的兴趣和应用数学的意识与能力.“数学作为一种文化,具有比数学知识更为丰富和深邃的文化内涵,数学文化是对数学知识、技能、能力和素质等概念的高度概括.”数学文化属于科学文化,是一种理性文化,可以表述为以数学科学体系为核心,以数学的思想、精神、知识、方法、技术、理论等所辐射的相关文化领域为有机组成部分的一个具有强大精神与物质功能的动态系统.这种具有核心价值的文化理应被我们的认知结构吸收并发挥潜移默化的功能,课外活动应加强这方面的认识与体验.
小 结
本文根据数学的特点以及大学数学教育的目标,从数学认知的角度,提出了“立体的数学认知”这一教育理念与方法,并从教师示范作用,教材的与时俱进性,教学内容与方法,课外活动的开展等四个方面说明这种方法的必要性与实施办法.“立体的数学认知”在很大程度上能使学生从传统数学教育的枯燥模式中活跃起来,从而能更全面、深入地认识数学思想的实质,并能积极地将数学知识应用于实践,最终提高数学素质.这种方法契合当前的教学、教育改革,能有效培养学生的数学思维与能力,提高学生的数学素质,锻炼学生的数学精神与品质,熏陶数学文化的价值,从而为促进社会的发展与进步培植具有理性与科学精神的文化种子.
【参考文献】
[1] 李大潜,漫谈大学数学教学的目标与方法[J].中国大学教学,2009,1:7-10.
[2] 李吉寶,史可富,数学认知结构的特征与数学学习过程研究[J].数学教育学报,2005,3(14):80-82.
[3] 陈申宝,高职数学教学立体化改革探索[J].高等数学研究,2013,1(16):87-89.
[4] 马德炎,大学数学立体化教学的实践与认识[J].教书育人:高教论坛,2011,9 :84-86.
[5] 薛有才,大学数学立体化课程教学模式的实践报告[J].浙江科技学院学报,2008,2(20):139-142.
[6] 黄绍军,浅论我国大学数学教育改革[J].四川行政学院学报,2003,3:91-93.