3sinA+4sinB+18sinC=3sinA+4sinB+18sin(A+B).
为此, 在区域(0,π)×(0,π)上考虑二元函数
f(x,y)=3sinx+4siny+18sin(x+y)
的极值问题.由二元函数极值的必要条件, 得
![](https://img.fx361.cc/images/2023/0329/98923c3237140c8cfb1ee8d76dcb7848a7ef0283.webp)
(3)
![](https://img.fx361.cc/images/2023/0329/a7e35981e6d742296a781a169b93d06db14cdeb8.webp)
(4)
![](https://img.fx361.cc/images/2023/0329/325ac92ae65ac90cfc24d23e36cee2db0285c7b7.webp)
![](https://img.fx361.cc/images/2023/0329/63fcb8c347ac490be993bf9922a3bd64c4186691.webp)
整理得
(16t-9)(3t2+16t+9)=0.
(5)
对应t1有
对应t2有
又
![](https://img.fx361.cc/images/2023/0329/55582ca75ff8b5d5ddf117e826c10ace245f2328.webp)
![](https://img.fx361.cc/images/2023/0329/f889ccf96e576ab132b4937ad2f6813c955f6c45.webp)
那么
EG-F2=12sinxsiny+18sin(x+y)[3sinx+4siny].
![](https://img.fx361.cc/images/2023/0329/25494016f33e0c97a9bc87e302819ca624aef868.webp)
![](https://img.fx361.cc/images/2023/0329/205c53bdd13bb0d88e76012ba169aa31bcc780aa.webp)
![](https://img.fx361.cc/images/2023/0329/e22551a4c617b2c28c4541e39d5dc87730567d99.webp)
![](https://img.fx361.cc/images/2023/0329/7e7b4ba374294b8fe4a2c5368a7bb0b355b7607d.webp)
受此启发,考虑一般的问题: 对于△ABC, 求xsinA+ysinB+zsinC的最大值. 为此,先给出著名的嵌入不等式.
引理1[2-4]对于任一△ABC和任意的实数x,y,z和正整数n, 均有
x2+y2+z2≥(-1)n+12(yzcos(nA)+zxcos(nB)+xycos(nC)),
(6)
当且仅当
x∶y∶z=sin(nA)∶sin(nB)∶sin(nC)
时不等式(6)取等号.
不等式(6)常称为Wolstenholme-Klamkin加权三角不等式.
定理1设x,y,z,k均是正数,且满足
![](https://img.fx361.cc/images/2023/0329/b72bdc4a23929dabe94b9bbb2737dc14aa386496.webp)
对于任意三角形△ABC,有
![](https://img.fx361.cc/images/2023/0329/8717c8aa4a4a49fb22e855faa0cbd5029fc3736f.webp)
(7)
其中上式等号成立当且仅当成立
![](https://img.fx361.cc/images/2023/0329/13935dde309dbb077ec743dab6e89cd2c4efc698.webp)
(8)
在给出定理1证明之前, 先来证明一个引理.
![](https://img.fx361.cc/images/2023/0329/fddf8601306bddee5938b38022d60481948f63fc.webp)
则有
![](https://img.fx361.cc/images/2023/0329/b9640e56f36a9ad4dd9498fcf723735b20646a13.webp)
证由题设与正弦定理, 可知
![](https://img.fx361.cc/images/2023/0329/f4d42500cd42bee321d3f9f9f8bb69e163679603.webp)
![](https://img.fx361.cc/images/2023/0329/81752afeb3ac548cb28476c632c7ca5beed4e2c1.webp)
a2∶b2∶c2=p(1-p)∶q(1-q)∶r(1-r)=p(q+r)∶q(p+r)∶r(p+q).
于是
sin(2A)∶sin(2B)∶sin(2C)
=(a2(b2+c2-a2))∶(b2(c2+a2-b2))∶(c2(a2+b2-c2))
=(2pqr(q+r))∶(2pqr(r+p))∶(2pqr(p+q)
=(q+r)∶(r+p)∶(p+q)
![](https://img.fx361.cc/images/2023/0329/ed8dce4bd73375ca60efb862b452498a6b731f16.webp)
定理1的证明首先, 注意到对于给定的正数x,y,z, 满足
的k是唯一存在的. 由引理1, 可得
x2+y2+z2+2yzcos(2A)+2zxcos(2B)+2xycos(2C)≥0,x,y,z>0.
等号成立的条件是
x∶y∶z=sin(2A)∶sin(2B)∶sin(2C).
![](https://img.fx361.cc/images/2023/0329/8cbcde512889402a66efae15655a4c69bcb31d2a.webp)
![](https://img.fx361.cc/images/2023/0329/4ed6b995a2a73e44a8ca6987ebaad32c058e6a26.webp)
再利用二倍角公式有
![](https://img.fx361.cc/images/2023/0329/d8df90203849ae96b028bdd9cec273ecab4b4ba2.webp)
(9)
用x2+k,y2+k,z2+k,k>0来代替上式中x,y,z, 则有
(x2+k)sin2A+(y2+k)sin2B+(z2+k)sin2C
![](https://img.fx361.cc/images/2023/0329/ced5240c5f2a90add783cf0aa524cc9850d6c075.webp)
上式等号成立的条件是
![](https://img.fx361.cc/images/2023/0329/4f3ea863c079ad146e8c8edd73720a24e91d5621.webp)
另一方面, 利用Cauchy-Schwarz不等式有
(xsinA+ysinB+zsinC)2
![](https://img.fx361.cc/images/2023/0329/44730fc52a641d2918f615c710355db731959373.webp)
其中上式等号成立当且仅当
![](https://img.fx361.cc/images/2023/0329/13935dde309dbb077ec743dab6e89cd2c4efc698.webp)
![](https://img.fx361.cc/images/2023/0329/5779710a0ebe4c8edb347ea4a2a6d95c70ccd1da.webp)
![](https://img.fx361.cc/images/2023/0329/cb6322cb197a1904af13d430d62de25057b95157.webp)
因此, 得到
![](https://img.fx361.cc/images/2023/0329/b3afb397c13a0337b8e935aad95b2034127c156e.webp)
即为
![](https://img.fx361.cc/images/2023/0329/8717c8aa4a4a49fb22e855faa0cbd5029fc3736f.webp)
根据引理1知等号成立当且仅当
![](https://img.fx361.cc/images/2023/0329/13935dde309dbb077ec743dab6e89cd2c4efc698.webp)
显然, 当x=3,y=4,z=18时, 由条件
可推出k=96, 故有
![](https://img.fx361.cc/images/2023/0329/9cd489f6ee5c58fa07721d7e315df9c8ba1b0297.webp)
另一方面, 知道3sinA+4sinB+18sinC取极值时, 有
![](https://img.fx361.cc/images/2023/0329/7e7b4ba374294b8fe4a2c5368a7bb0b355b7607d.webp)
接着自然会思考一个问题,如何求解对应的余弦的线性组合的最大值问题, 如求xcosA+ycosB+zcosC 的最值问题. 为了简单起见,不妨设△ABC是锐角三角形, x,y,z都是正数的情形, 故得到如下结论[5-7].
推论1设x,y,z为任意给定的正数, 则对于任一△ABC, 有
![](https://img.fx361.cc/images/2023/0329/ab658c062bad501ad01aba1e6fc701cdaa659134.webp)
(10)
该定理的证明可直接由嵌入不等式得到[5]. 接下来考虑(sinA)x·(sinB)y·(sinC)z与(cosA)x·(cosB)y·(cosC)z的上界问题.
定理2设x,y,z是任意给定的正数, 对于任意三角形△ABC, 有
![](https://img.fx361.cc/images/2023/0329/59bf76dc66f2e2b96ef80f1f774f45c23e2956e0.webp)
(11)
其中不等式成立当且仅当
![](https://img.fx361.cc/images/2023/0329/b6d670a99fd024a736857079ab19f5629eaa2b3e.webp)
证对于任意给定的正数x,y,z, 令
![](https://img.fx361.cc/images/2023/0329/d4ba446649ac6a46b50f72021222ee07131e2c90.webp)
对u,v,w应用不等式(10)式, 得
![](https://img.fx361.cc/images/2023/0329/7c8e37aa7b3c001f0f2e95a85a8735231bb9449a.webp)
再利用加权幂平均不等式[8], 得
![](https://img.fx361.cc/images/2023/0329/4b88475fd8cd63590e0ea0862db352ecce175842.webp)
![](https://img.fx361.cc/images/2023/0329/66df01e26f6a4107805d9d73adff534a35f0026d.webp)
即
![](https://img.fx361.cc/images/2023/0329/0e99e39f6d8fc96596316d3970c15308c711b93d.webp)
所以
![](https://img.fx361.cc/images/2023/0329/d84cb14e8451f56e281430af0a1e124ecd25e073.webp)
上式取等号当且仅当
![](https://img.fx361.cc/images/2023/0329/b6d670a99fd024a736857079ab19f5629eaa2b3e.webp)
定理3在锐角三角形△ABC中, 设x,y,z是任意给定的正实数, 则有
![](https://img.fx361.cc/images/2023/0329/8d5960ba0f4a585c4440a1177566e8391d513040.webp)
(12)
其中不等式取等号当且仅当
![](https://img.fx361.cc/images/2023/0329/a930938487a1bdf556c993bf6ced44916c3e4c6d.webp)
证利用推论1, 即在(10)式的x,y,z分别置换成
![](https://img.fx361.cc/images/2023/0329/911647206b3a80f4ae38480c6cf6db94529d43ce.webp)
即有
![](https://img.fx361.cc/images/2023/0329/111e9ccab1ac0314be295d6e36553fcf4854947d.webp)
然后, 利用加权幂平均不等式得
![](https://img.fx361.cc/images/2023/0329/fda60677c3eaba470e56c57638e1468162f2b2d3.webp)
![](https://img.fx361.cc/images/2023/0329/2ef72ef5b6fa118a50e130e93a976605dc156301.webp)
从而证得
![](https://img.fx361.cc/images/2023/0329/8d5960ba0f4a585c4440a1177566e8391d513040.webp)
[参考文献]
[1]徐利治.数学分析的方法及例题选讲-分析学的思想、方法与技巧[M].大连∶大连理工大学出版社.2007.
[2]Wu S, Debnath L. Generalization of the Wolstenholme cyclic inequality and its application[J]. Computers Mathematics with Applications January, 2007, 53: 104-114.
[3]Wolstenholme J. A book of Mathematical Problems[M]. London: Cambridge Press, 1867: 250-257.
[4]匡继昌.常用不等式[M].济南:山东科学技术出版社, 2004.10.
[5]朱华伟.嵌入不等式-数学竞赛命题的一个宝藏[J].中等数学,2010, 1: 14-17.
[6]杨学枝.数学奥林匹克不等式研究[M].哈尔滨:哈尔滨工业大学出版社,2008:420-428.
[7]沈虎跃.高中数学竞赛专题讲座-三角函数[M].杭州: 浙江大学出版社, 2007.
[8]潘杰, 孟勇.关于一道数学竞赛试题[J].大学数学, 2013, 29(4): 103-105.
Solutions to a Question of the Chinese Universities Mathematics
Competitions and Its Generalization
WANGYong-xi1,WANGZe-wen1,LIUBing2,QIUShu-fang1
(1. College of Science, East China Institute of Technology, Nanchang 330013, China;
2. Nanchang Second Middle School, Nanchang 330038, China)
Abstract:This paper presents three methods are presented for solving a question of the Chinese universities mathematics competitions, and studies the maximization of the linear summation of three interior angles’ sines of a triangle which extends the conclusion of the competition question. Finally, the bounded problems of the products of the sines and cosines exponents of three interior angles are studied.
Key words: universities mathematics competitions; triangle; embedding inequality; sine theorem; cosine theorem