HMGA2 siRNA对胆管癌RBE细胞生物学行为的影响

2015-04-04 12:53修鹏王贵阳辛诚高建新李可为上海交通大学医学院附属仁济医院上海200127
山东医药 2015年22期
关键词:细胞增殖细胞凋亡胆管癌

修鹏,王贵阳,辛诚,高建新,李可为(上海交通大学医学院附属仁济医院,上海200127)

HMGA2 siRNA对胆管癌RBE细胞生物学行为的影响

修鹏,王贵阳,辛诚,高建新,李可为
(上海交通大学医学院附属仁济医院,上海200127)

摘要:目的观察HMGA2 siRNA对胆管癌RBE细胞生物学行为的影响。方法将常规培养的胆管癌RBE细胞分为观察组和对照组,每组6个复孔。观察组加入HMGA2 siRNA,对照组加入空白对照siRNA。采用CCK8法计算两组增殖速率。采用流式细胞术检测两组细胞凋亡率。采用细胞迁移实验检测两组细胞迁移能力。采用流式细胞数检测两组细胞周期分布。结果①细胞增殖速率:观察组、对照组细胞增殖速率分别为0.30±0.01、0.49±0.03观察组低于对照组,P<0.05。②细胞凋亡率:观察组、对照组早期凋亡率分别为18.71%±0.61%、11.90%±1.01%,总凋亡率分别为25.73%±0.19%、18.66%±0.97%,观察组早期、总凋亡率均高于对照组,P均<0.05。③细胞迁移能力:观察组、对照组穿膜细胞数分别为15.0±0.6、40.7±1.5,观察组低于对照组(P<0.05)。④细胞周期分布:观察组、对照组S期细胞比例分别为35.34%±1.95%、23.82%±0.95%,观察组高于对照组(P<0.05)。结论HMGA2 siRNA可以抑制胆管癌RBE细胞增殖和迁移、促进细胞凋亡、阻滞细胞周期阻于S期。

关键词:胆管癌; HMGA2 siRNA;细胞增殖;细胞凋亡;细胞迁移;细胞周期

HMGA2基因表达与许多恶性肿瘤的进展、侵袭、转移及预后密切相关,HMGA2高表达的肿瘤恶性程度高,更倾向于侵犯转移和预后不良[1~4]。但目前关于HMGA2与胆道系统肿瘤关系的报道较少。2014年6~10月,我们观察了HMGA2 siRNA对胆管癌RBE细胞增殖、凋亡、迁移和细胞周期分布的影响。现报告如下。

1 材料与方法

1.1细胞培养及分组RBE细胞系购自中国科学院上海分院细胞库,用含10%胎牛血清、5%青霉素/链霉素和5%L-谷胺酰胺的DMEM培养基培养,培养条件为37℃、5% CO2。将细胞接种于6孔板,每孔2×106~2.5×106个细胞。设观察组和对照组,各6孔。观察组每孔加入HMGA2 siRNA 5 μL和转染试剂jetPRIME 4 μL,对照组加5 μL空白siRNA和4 μL转染试剂jetPRIME,常规培养48 h进行后续实验。

1.2细胞增殖速率测算采用CCK8试剂盒用CCK8法检测。细胞转染siRNA后,取上述生长近融合状态的RBE细胞,以0.25%胰酶消化,调节细胞密度至5 000个/mL后以1 000个/孔接种于96孔板,置于CO2培养箱24h后加入10 μL CCK-8混合液,震荡10 s、培养2 h后测450 nm吸光度(A 值),并以此反映细胞增殖率。

1.3细胞凋亡率检测应用Annexin VAPC试剂盒采用流式Annexin V-PI染色法。转染48h后使用冷的PBS洗细胞两次,再用1×Binding Buffer缓冲液制成1×106细胞/mL的悬液。加入100 μL细胞悬液。加入AnnexinV与核酸染料各1 μL后轻轻混匀,室温避光处放置15 min。分别加入1×Binding Buffer缓冲液80 μL。1 h内上流式细胞仪测定结果。检测结果用CFlow Plus软件分析。

1.4Transwell小室细胞迁移检测转染48 h后用不含FBS的DMEM培养液制成浓度为1×105个/mL的单细胞悬液。8mm的Transwell小室下室加600μL含10%FBS的DMEM培养液,上室加100 μL细胞悬液,每组设3个复孔,常规培养。24 h后PBS洗涤2次,甲醛固定5 min,结晶紫染色15 min,洗去染液。显微镜下每张滤膜随机取5个视野,计数穿膜细胞数,取每组细胞的穿膜平均数表示肿瘤细胞的迁徙能力。

1.5细胞周期检测采用流式细胞术检测细胞周期分布取转染48 h后的RBE细胞以1×105/mL密度接种于25 mL培养瓶中,培养24 h后消化收集细胞,PBS洗涤,70%乙醇固定细胞4℃过夜,PBS 洗2次,制成单细胞悬液,加入RNA酶、PI,流式细胞仪检测G0/G1期、S期和G2/M期细胞比例。用flowjo软件分析周期分布。

1.6统计学方法采用SPSS19.0统计软件。结果用珋x±s表示。每个实验重复3次,组间比较采用方差分析。P<0.05为差异有统计学意义。

2 结果

2.1细胞增殖率观察组、对照组细胞增殖速率分别为0.30±0.01、0.49±0.03,观察组低于对照组(P<0.05)。

2.2细胞凋亡率观察组、对照组早期凋亡率分别为18.71%±0.61%、11.90%±1.01%,总凋亡率分别为25.73%±0.19%、18.66%±0.97%,观察组早期、总凋亡率均高于对照组(P均<0.05)。

2.3细胞迁移能力观察组、对照组穿膜细胞数分别为15.0±0.6、40.7±1.5,观察组低于对照组(P <0.05)。

2.4细胞周期分布观察组、对照组S期细胞比例分别为35.34%±1.95%、23.82%±0.95%,观察组高于对照组(P<0.05)。

3 讨论

HMGA2外显子5区编码蛋白酸性C羧基端区域,包括mRNA的3'非翻译区。HMGA2的3'非翻译区包括与LET-7家族miRNA互补的特定的序列。Let-7miRNA与特定的序列绑定转录后负向调控HMGA2的mRNA和蛋白表达[5,6]。HMGA2基因在成熟组织中表达很低甚至不表达,而在早期胚胎组织和上皮组织及间充质来源的恶性肿瘤中高表达,这表明HMGA2基因对高级真核生物的恶性肿瘤的增殖和分化起着非常重要的作用[7,8]。在许多良恶性肿瘤中发现HMGA2高表达,可能对肿瘤转化发挥了作用。

本研究结果显示,HMGA2siRNA可以抑制胆管癌细胞增殖和迁移,促进癌细胞的凋亡,阻滞细胞于S期。HMGA2蛋白可以通过多种方式发挥其致瘤性,比如激活细胞周期、促进转录因子表达、干扰细胞凋亡或者破坏DNA的修复过程[9]。有研究表明HMGA2可通过上调细胞周期素B2 (cyclinB2)或细胞周期素A (cyclinA),促进细胞周期的转化,干扰细胞周期,诱导肿瘤生长[10,11]。HMGA2还能够调节p16的表达[12]。正常情况下,p16与细胞周期素D(cyclinD)竞争性结合CDK4、CDK6,抑制CDK4和CDK6的活性,使pRb保持去磷酸化高活性,去磷酸化的pRb对转录因子E2F的有抑制作用,从而阻止细胞从G1期进入S期,直接抑制细胞增殖。相反,当基因失活时,会导致调节途径失控,细胞增殖失控而使细胞过度增殖,凋亡受抑制,导致肿瘤发生[13,14]。

研究表明,HMGA2和Smads共同绑定到Snail基因的启动子导致Snail表达和EMT。HMGA2高表达并进行间充质转变的细胞除了Snail高表达外Twist也高表达[15,16]。HMGA2通过EMT促进细胞的迁移能力增强。恶性转移性的癌症是有良性的畸形增生逐渐发展演变而来的[17]。能够使癌细胞侵入局部组织,进入血管内渗并且作为肿瘤起始细胞不断繁殖的关键过程是上皮间充质转变(EMT)[18]。在EMT过程中,已分化的上皮细胞失去细胞间的黏附因子,表现出更多的能动性,显示出间叶细胞的特性[19]。许多具有间充质转变特征的细胞活动被认为是由一组和EMT共同的转录因子调节的。这些转录调节因子包括锌指因子Snail1 (Snail),Snail2(也称作Slug),ZEB1/δEF1,ZEB2/SIP1,还有基本螺旋因子E47和Twist1 (Twist)[20]。由这五种因子调节的完整的转录过程目前还未阐明。然而,关于EMT转录调节的明显例证是CDH1被Snail1、Snail2、E47、ZEB1和ZEB2抑制,被认为是导致CDH1基因启动子的DNA序列甲基化修饰和该基因终端沉默的机制[19]。另一方面,Twist诱导促进肿瘤细胞侵袭性的基因的表达[21],叉头转录因子FoxC2诱导基因的甲基化修饰过程[22]。当然,相关的具体机制还需实验进一步研究和证实。

参考文献:

[1]Miyazawa J,Mitoro A,Kawashiri S,et al.Expression of mesenchyme-specific gene HMGA2 in squamous cell carcinomas of the oral cavity[J].Cancer Res,2004,64(6) : 2024-2029.

[2]Motoyama K,Inoue H,Nakamura Y,et al.Clinical significance of high mobility group A2 in human gastric cancer and its relationship to let-7 microRNA family[J].Clin Cancer Res,2008,14(8) : 2334-2340.

[3]Wang X,Liu X,Li A Y,et al.Overexpression of HMGA2 promotes metastasis and impacts survival of colorectal cancers[J].Clin Cancer Res,2011,17(8) : 2570-2580.

[4]Zou Q,Xiong L,Yang Z,et al.Expression levels of HMGA2 and CD9 and its clinicopathological significances in the benign and malignant lesions of the gallbladder[J].World J Surg Oncol,2012,10(5) : 92.

[5]Lee YS,Dutta A.The tumor suppressor microRNA let-7 represses the HMGA2 oncogene[J].Genes Dev,2007,21(9) : 1025-1030.

[6]Mayr C,Hemann MT,Bartel DP.Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation[J].Science,2007,315(5818) : 1576-1579.

[7]Hock R,Furusawa T,Ueda T,et al.HMG chromosomal proteins in development and disease[J].Trends Cell Biol,2007,17(2) : 72-79.

[8]Wunderlich V,Bottger M.High-mobility-group proteins and cancer--an emerging link[J].J Cancer Res Clin Oncol,1997,123 (3) : 133-140.

[9]Fedele M,Fusco A.HMGA and cancer[J].Biochim Biophy Acta,2010,1799(1-2) : 48-54.

[10]De Martino I,Visone R,Wierinckx A,et al.HMGA proteins upregulate CCNB2 gene in mouse and human pituitary adenomas[J].Cancer Res,2009,69(2) : 1844-1850.

[11]Tessari MA,Gostissa M,Altamura S,et al.Transcriptional activation of the cyclin A gene by the architectural transcription factor HMGA2[J].Mol Cell Biol,2003,23(5) : 9104-9116.

[12]Nishino J,Kim I,Chada K,et al.HMGA2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression[J].Cell,2008,135(2) : 227-239.

[13]Kamb A,Gruis NA,Weaver-Feldhaus J,et al.A cell cycle regulator potentially involved in genesis of many tumor types[J].Science,1994,264(5157) : 436-440.

[14]Hunter T,Pines J.Cyclins and cancer.II: Cyclin D and CDK inhibitors come of age[J].Cell,1994,79(4) : 573-582.

[15]Thuault S,Tan EJ,Peinado H,et al.HMGA2 and Smads co-regulate SNAIL1 expression during induction of epithelial-to-mesenchymal transition[J].J Biol Chem,2008,283 (48) : 33437-33446.

[16]Thuault S,VALCourt U,Petersen M,et al.Transforming growth factor-beta employs HMGA2 to elicit epithelial-mesenchymal transition[J].J Cell Biol,2006,174(2) : 175-183.

[17]Nguyen DX,Bos PD,Massague J.Metastasis: from dissemination to organ-specific colonization[J].Nature Rev Cancer,2009,9 (4) : 274-284.

[18]Thiery JP,Acloque H,Huang RY,et al.Epithelial-mesenchymal transitions in development and disease[J].Cell,2009,139(5) : 871-890.

[19]Berx G,Vanroy F.Involvement of members of the cadherin superfamily in cancer[J].Cold Spring Harbor Perspect Biology,2009,1(6) : 3129.

[20]Peinado H,Olmeda D,Cano A.Snail,Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype [J].Nature Rev Cancer,2007,7(6) : 415-428.

[21]Eckert MA,Lwin TM,Chang AT,et al.Twist1-induced invadopodia formation promotes tumor metastasis[J].Cancer cell,2011,19(3) : 372-386.

·临床研究·

Research of the effect of HMGA2 on biological behavior of cholangiocarcinoma cell RBE

XIU Peng,WANG Gui-yang,XIN Cheng,GAO Jian-xin,LI Ke-wei
(Renji Hospital,School of Medicine,Shanghai Jiaotong University,Shanghai 200127,China)

Abstract:Objective To observe the effect of HMGA2 on biological behavior of the cholangiocarcinoma cell of RBE.Methods The cholangiocarcinoma cell of RBE cultured by routine method were divided into observation group and control group,each group had six holes.HMGA2 siRNA and NC siRNA were added to observation group and control group.The proliferation rate of the two groups were determined by CCK8 assay.Cell cycle distribution and cell apoptosis rate were detected by flow cytometry.Migrate ability of the two groups were detected by cell migration experiment.Results①Cell proliferation rate: The cell proliferation rate of observation group and control group were 0.30±0.01,0.49±0.03,observation group was lower than the control group,P<0.05.②Apoptosis rate: The early apoptosis rate of observation group and control group were 18.71%±0.61%,11.90%±1.01%,total apoptosis rate were 25.73%±0.19%,18.66%± 0.97%,apoptosis rate of observation group was higher than that of control group,P<0.05.③Cell migration ability: The number of the cells across the membrane in observation group and control group were 15.0±0.6,15.0±1.5,observation group was lower than the control group,P<0.05.④Cell cycle distribution: The cells in S phase of the observation group and control group were 35.34%±1.95%,23.82%±0.95%,observation group was higher than the control group,P<0.05.Conclusions HMGA2 siRNA can inhibit the cell proliferation and migration,it can also induce cell apoptosis and block cell cycle in S phase in the cholangiocarcinoma cell of RBE.

Key words:Cholangiocarcinoma; HMGA2 siRNA; cell proliferation; cell apoptosis; cell migration; cell cycle

(收稿日期:2015-04-17)

通信作者简介:李可为(1972-),博士,主任医师,硕士研究生导师,研究方向为疾病的临床和基础研究。E-mail: keweipig@126.com

作者简介:第一修鹏(1987-),男,硕士研究生,研究方向为胆道疾病的临床和基础研究。E-mail: doctorxiu@126.com

基金项目:国家自然科学基金资助项目(81372188)。

文章编号:1002-266X(2015)22-0027-03

文献标志码:A

中图分类号:R735.8

doi:10.3969/j.issn.1002-266X.2015.22.008

猜你喜欢
细胞增殖细胞凋亡胆管癌
肝脏里的胆管癌
B7-H4在肝内胆管癌的表达及临床意义
木犀草素对对乙酰氨基酚诱导的L02肝细胞损伤的保护作用
miRAN—9对肿瘤调控机制的研究进展
CT及MRI对肝内周围型胆管癌综合诊断研究
人类microRNA—1246慢病毒抑制载体的构建以及鉴定
传染性法氏囊病致病机理研究
G—RH2诱导人肺腺癌A549细胞凋亡的实验研究
有关“细胞增殖”一轮复习的有效教学策略
CXCL12在胆管癌组织中的表达及意义