提高初中学生在数学课堂的接收能力

2015-03-25 08:06杨树彬
读写算·教研版 2014年19期
关键词:返璞归真数学本质

杨树彬

摘 要:数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的东西,就要教的透彻”。教师只有不断揣摩教材,才能对教材有独到的体悟,在课堂教学中也才能做到“精彩纷呈”。数学教师的教学,就应拉近数学与学生的距离,让学生感受到它的火热,享受数学中生动的故事。把数学的形式化逻辑链条,恢复为当初数学家发明创新时的火热思考,做到返璞归真。

关键词:数学本质;返璞归真;火热思考;主动建构

中图分类号:G632 文献标识码:B 文章编号:1002-7661(2014)19-008-01

教师的教学在于能够“授人以业”、“授人以法”、“授人以道”。从所授知识要求的角度来看,“授人以业”要求所授知识“准确”;“授人以法”要求所授知识“深刻”,而“授人以道”则更多地要求所授知识“本质”。显然,一堂高效的数学课教学必须呈现“数学本质”。对于“数学本质”本身不同的理解有不同的视角,我们在课堂中要追求的“数学本质”,一般其内涵包括:数学知识的内在联系;数学规律的形成过程;数学思想方法的提炼;数学理性精神(依靠思维能力对感性材料进行一系列的抽象和概括、分析和综合,以形成概念、判断或推理,这种认识为理性认识。重视理性认识活动,以寻找事物的本质、规律及内部联系)的体验等方面。

基于对“数学本质”内涵的认识,本人认为要在课堂中呈现“数学本质”,提高初中数学课堂效果,应从以下几个方面下功夫。

一、教师要深透领悟教材内容

数学的教学,最终要教师本人落实到课堂中去,要做到切实提高课堂教学效果,就要求我们教师“凡是你教的东西,就要教的透彻”。为求透彻,教师必须深钻教材,“沉下去”,理清知识发生的本原,把握教材中最主要、最本质的东西。回顾自己上过的许多的课,总感到有些许的憾意:课堂缺少耐人回味的东西,缺少引起学生思考的部分,对教材内容的领悟浅薄,缺少厚重感。本人认为要弥补这些憾意,教师对教材的领悟必须有自己的眼光,目光要深邃,看到的不能只是文字、图表和各种数学公式定理,而应是书中跳跃着的真实而鲜活的思想。这种思想就是对“数学本质”的认识,这种思想就是“不在书里,就在书里”,这种思想能让所有教材内容融入到教师的思维中,成为教学的能力源泉。“一个能思想的人,才是一个力量无边的人。”教师只有不断揣摩教材,才能对教材有独到的体悟,在课堂教学中也才能做到“精彩纷呈”。

让我们来看一则例子:

若E、F、G、H分别是四边形ABCD各边的中点,说明四边形EFGH是平行四边形的理由。这是初中数学中很典型的一道题目,连接AC,利用三角形的中位线定理,很容易证明。对此我们可以进一步思考,适当地替换它的条件,再考察它的结论的变化情况。

思考1:如果把条件中的四边形ABCD依次改变为矩形、菱形、正方形或梯形、等腰梯形,其它条件不变,那么所得的四边形EFGH是怎样的四边形呢?

思考2:如果把结论中的平行四边形EFGH依次改变为矩形、菱形或正方形,那么原四边形ABCD应具备什么条件呢?

思考3:如果条件中的中点替换为定比分点,那么四边形EFGH是怎样的四边形呢?

思考4:如果把条件中一组对边的中点改为两条对角线的中点,其它条件不变,则四边形EFGH是怎样的四边形呢?

面对这么多的变化,学生肯定头疼,如果抓住了四边形ABCD的对角线是相等,还是垂直,还是既相等又垂直,还是既不相等又不垂直这一本质特征,那么这类问题就都可迎刃而解,学生掌握起来容易也乐于掌握。通过这类题目的解答,让学生领悟:数学问题千变万化,而其中的方法是相通的。学习数学重在掌握这种具有普遍意义,能反映数学本质的知识。注重问题间的类比,使解题总结成为自觉的行动,这样可以达到举一反三、由例及类,解一题通一片的目的。

可以再看一例:

已知a、b、m都是正整数,并且a

假如令b表示溶液(糖水),a表示常溶质(糖),那么是糖水(不饱和)的浓度。现向糖水中再放糖m>0,糖水变甜,这就是不等式的现实意义,也体现了该不等式的价值。

至此,作为教师还可进一步思考,其实还可以进一步导出下面的结论:

(1) 若a、b、m都是正数,并且a

(2) 若a、b、m、n都是正数,并且a

(3) 若a、b、m、n都是正数,并且a

甚至还可以提出:现在,如果将两杯浓度不一样甜的糖水( )倒在一起,甜度会怎样?显然,甜度在原来两种甜度之间。

事实上,初中数学有许多问题都具有生活背景和意义。这需要我们教师深入课本用心体会,在教学中发掘问题的内在联系,抽象问题的本质,进而用数学语言(符号)来表达问题的实质。这样引导,对数学本质会有更深的认识。

二、教师要真正做到把数学知识“返璞归真”

对许多初中学生来说,学数学难,但又必须学。在学生眼里,数学是一个又

一个公式、符号、定理、习题的堆积,它们是如此的抽象、散乱、遥远、不可琢磨,它们就象石塑一般——充满着理性精神的美却显得冰冷和生硬。数学本来是这样,还是我们的数学教学的原因?翻看人类的数学思想史,在数学“冰冷的逻辑推理之中有一大堆生动的故事”,其“冰冷美丽”的外表下存在着“朴素而火热的思考”。数学教师的教学,就应拉近数学与学生的距离,让学生感受到它的火热,享受数学中生动的故事。把数学的形式化逻辑链条,恢复为当初数学家发明创新时的火热思考,做到返璞归真。

三、教师要尊重学生接受知识的已有基础本质

“万丈高楼起于平地,千里之行始于足下。”学生能接受新知识是建立在其原有的基础水平之上。教师应该以学生现有思维发展水平为依据,关注学生已有的知识和经验,选择与学生发展水平相适应的学习材料,为学生设置恰当的教学情境,使学生对新知识进行充分的思维加工,通过新知识与已有认知结构之间的相互作用,使新知识同化到已有认知结构中去,达到对新知识的相应理解和主动建构。

来看这样两道题目:

(1)有两个商场在节前进行商品降价酬宾销售活动,分别采用两种降价方

案:甲商场是第一次打p折销售,第二次找q折销售;乙商场是两次都打 折销售。请问:哪个商场的价格最优惠?

(2)今有一台天平两臂之长略有差异,其他均精确。有人要用它称量物体的重量,只须将物体放在左右两个托盘中各称一次,再将称量结果相加后除以2就是物体的真实重量。你认为这种做法对不对?如果不对的话,你能否找到一种用这种天平称量物体重量的正确方法?

以上两个问题,其情境贴近生活,贴近实际,与学生的认知相符合,给学生创设了一个观察、联想、抽象、概括、数学化的过程。在这样的基础上,再注意给学生动手、动脑的空间和时间,往往能取得良好的教学效果。

再比如在讲授“距离”这一块内容。初中阶段学过的距离有“两点之间的距离”,“直线外一点到已知直线的距离”“两平行线之间的距离”,这些概念学生往往很容易混淆,对于基础较弱的学生来说理解起来有一定的困难。如果我们这样向学生解释几何中关于两个图形间的距离的概念:图形P内的任一点与图形Q内的任一点间的距离中的最小值,叫做图形P与图形Q的距离。由此,学生对“两点之间的距离”,“直线外一点到已知直线的距离”“两平行线之间的距离”的定义会有更深一步的理解与体会,也能从本质上深刻地认识到两个图形之间的距离最终“化归”为点与点的距离。掌握了这一点,即便是学生以后到高中段学习“点到平面的距离、直线到它平行的平面的距离、两个平行平面的距离、异面直线的距离”的概念时学生也能做到不教自明。

猜你喜欢
返璞归真数学本质
返璞归真亲切自然
培养初中生数学思维能力的“回顾反思”策略探析
数学教学要注重数学的本质
抓住问题本质渗透归纳类比数学思想
如何让小学生写作返璞归真
注重心理关怀,避开人为陷阱