李耀红,张海燕
(宿州学院 智能信息处理实验室,安徽 宿州234000)
分数阶微积分理论广泛应用于自然科学和工程技术等领域,目前已成为许多数学工作者的研究热点[1-6].分数阶微分方程组边值问题也受到广泛关注[7-12].特别地,文献[7-8]利用Schauder不动点定理分别研究了分数阶方程组两点和三点边值问题正解的存在性;文献[9]利用锥拉伸和压缩不动点定理研究了混合分数阶方程组两点边值问题正解的存在性;文献[10]利用重合度理论研究了振动情形下分数阶方程组多点边值问题的可解性.基于此,本文考虑一类具分数阶积分边值条件且包含Caputo型分数阶导数的分数阶微分方程组边值问题:
其中:CD0+是Caputo分数阶导数;1<α,β<2;0<ρ,θ<1;f,g:[0,1]×ℝ×ℝ→ℝ.
与已有结果不同,本文积分边值条件依赖Riemann-Liouville分数阶积分,包含整数积分条件和局部多点边值条件,因此本文研究的边值问题(1)更具有一般性.具积分边值条件的常微分边值问题广泛应用于种群动态模型、血液流动模型、热传导、化学化工和等离子物理等领域[11-12].本文首先将问题(1)转化为等价的积分方程组,获得了相应的格林函数,然后利用Banach压缩映射原理,得到了该问题存在唯一解的充分条件,并给出了应用实例.
引理1[1]设α>0,u(t)∈C(0,1),则齐次分数阶微分方程u(t)=0有一般解
其中ci∈ℝ,i=1,2,…,n,n=[α]+1,[α]表示α的整数部分.
引理2[1]设p>q>0,f∈L[a,b],则对∀t∈[a,b],有
下也是一个Banach空间.显然,(X×Y,‖·‖X×Y)在范数‖·‖X×Y=max{‖u‖X,‖v‖Y}下是一个Banach空间.
引理3 设1<α<2,0<θ<1,u(t)∈C(0,1),则分数阶微分方程积分边值问题:
进一步由引理2有
将式(6)代入式(4),有
证毕.
同理,边值问题CDv(t)=y(t),v(0)=0,v(1)=v(1)也有唯一解
其中K2(t,s)通过将K1(t,s)中α置换为β,θ置换为ρ得到.
定义积分算子T:X×Y→X×Y 如下:T(u,v)(t)=(T1v(t),T2u(t)),其中:
引理4 设f,g∈C([0,1]×ℝ×ℝ,ℝ),则(u,v)∈X×Y 是分数阶微分方程组边值问题(1)的解当且仅当T(u,v)(t)=(u,v)(t),∀t∈[0,1].
证明:设(u,v)是边值问题(1)的解,且令
由式(7)知
由引理2知
易证(m,n)满足边值问题(1)的边值条件,则(m,n)是边值问题(1)的解,且(m,n)=(u,v).
且
则分数阶微分方程组边值问题(1)在X×Y中存在唯一解,其中:
于是,结合条件(9)有
因此
于是,利用假设条件(9)可知
再注意到
将式(14)代入式(13),则有
由范数的定义,并结合式(12),(15)知
同理,有
从而由式(16),(17)知
故由式(18)并结合式(11)可知,算子T是一个压缩映射,因此算子T在X×Y中有一个唯一不动点,即分数阶微分方程组边值问题(1)在X×Y中存在唯一解.
例1 考虑如下分数阶微分方程组边值问题:
于是f(t,x,y)=0.01x+0.012 5y+t2,g(t,x,y)=0.005x+0.01y+sin t,1<α=1.5<2,1<β=1.25<2,0<ρ=0.5<1,0<θ=0.25<1,则易知a=0.01,b=0.012 5,c=0.005,d=0.01,从而通过直接计算可得:M1=0.280 280,M2=0.354 460,N1=0.104 323,N2=0.135 117,M1+M2<1,N1+N2<1.因此,由定理1可知方程组边值问题(19)在X×Y中存在唯一解.
[1]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier,2006.
[2]Lakshmikantham V,Leela S,Devi J V.Theory of Fractional Dynamic Systems[M].New York:Cambridge Scientific Publishers,2009.
[3]ZHANG Shu-qin.Positive Solution for Boundary Value Problem of Nonlinear Frctional Differential Equations[J].Electron J Differ Eq,2006,2006(36):1-12.
[4]WEI Zhong-li,LI Qing-dong,CHE Jun-ling.Initial Value Problems for Fractional Differential Eequations Involving Riemann-Liouville Sequential Fractional Derivative[J].J Math Anal Appl,2010,367(1):260-272.
[5]BAI Zhan-bing.Solvability for a Class of Fractional m-Point Boundary Value Problem at Resonance[J].Comput Math Appl,2011,62(3):1292-1302.
[6]YANG Xiong,WEI Zhong-li,WEI Dong.Existence of Positive Solutions for the Boundary Value Problem of Nonlinear Fractional Differential Equations[J].Commun Nonlinear Sci Numer Simul,2012,17(1):85-92.
[7]SU Xin-wei.Boundary Value Problem for a Coupled System of Nonlinear Fractional Differential Equations[J].Appl Math Lett,2009,22(1):64-69.
[8]Ahmada Bashir,Nieto J J.Existence Results for a Coupled System of Nonlinear Fractional Differential Equations with Three-Point Boundary Conditions[J].Comput Math Appl,2009,58(9):1838-1843.
[9]ZHAO Yi-ge,SUN Shu-rong,HAN Zhen-lai,et al.Positive Solutions for a Coupled System of Nonlinear Differential Equations of Mixed Fractional Orders[J].Advances in Difference Equations,2011,2011(1):64-69.
[10]JIANG Wei-hua.Solvability for a Coupled System of Fractional Differential Equations at Resonance[J].Nonlinear Anal,2012,13(5):2285-2292.
[11]YANG Wen-gui.Positive Solutions for a Coupled System of Nonlinear Fractional Differential Equations with Integral Boundary Conditions[J].Comput Math Appl,2012,63(1):288-297.
[12]JIANG Ji-qiang,LIU Li-shan,WU Yong-hong.Multiple Positive Solutions of Singular Fractional Differential System Involving Stieltjes Integral Conditions[J].Electron J Qual Theory Differ Eq,2012,2012(43):1-18.