无催化剂合成吡咯螺环氧化吲哚

2014-08-13 01:33景德红刘雄伟郭丰敏刘雄利余章彪
遵义医科大学学报 2014年4期
关键词:吡咯状物吲哚

景德红,刘雄伟,黄 璇,郭丰敏,周 英,刘雄利,余章彪

(贵州大学 药学院暨贵州省中药民族药创制工程中心,贵州 贵阳 550025)

吡咯螺环氧化吲哚类化合物广泛存在与于天然产物及其药物分子中[1-4],例如,吡咯螺环氧化吲哚Horsfiline、Coerulescine、(+)-elacomine、Rychnophylline、Alstonisine Spirotyprostatin A首先从植物Apocynaceae和Rubiacae中分离得到[5]。吡咯螺环氧化吲哚Strychnofoline可以抑制许多细胞分裂过程中的有丝分裂,例如可以有效抑制细胞mouse melanoma B16、Ehrlich和Hepatom HW165中的有丝分裂[6]。因此,合成新类型的吡咯螺环氧化吲哚类化合物对候选新药的发现和建立新化合物库具有一定的研究意义。通过文献调研发现,到目前为止,尽管吡咯螺环氧化吲哚类化合物的合成已经有大量的文献报道[7-9],但是,文献报道的很多方法采用了金属催化,而金属离子的残留对药物分子或潜在药物分子的提纯会造成困难。因而探索便于提纯与操作简便的合成吡咯螺环氧化吲哚类似物的方法具有研究意义。为此,本文在有机溶剂和无催化剂条件下,通过N-甲氧基羰基-3-芳环烯基氧化吲哚、多聚甲醛和肌胺酸原位生成的1,3-偶极子的[3+2]环加成反应,有效合成得到了7个未见文献报道的吡咯螺环氧化吲哚类化合物(2a~2g),结构经1H NMR,13C NMR和HR MS表征。目标化合物合成路线如图1所示。

1 材料与方法

1.1 仪器与试剂 Bruker-300 MHz 型核磁共振仪(CD3COCD3为溶剂,TMS为内标); Bruker BIO TOF III Q 型高分辨质谱仪。所用试剂均为分析纯;所用无水溶剂均按标准程序进行脱水处理。原料1a~1g根据参考文献合成[10]。

1.2 目标化合物2a的合成 在反应管中依次加入309 mg (1.0 mmol)N-甲氧基羰基-3-芳环烯基氧化吲哚和150 mg (5.0 mmol)多聚甲醛,178 mg(2.0 mmol)肌胺酸,10 mL甲苯,80 ℃下搅拌反应12 h,TLC检测至反应完成后,直接上硅胶层析柱,乙酸乙酯/石油醚(V/V = 1/3)为洗脱剂,柱层析纯化得到2a。按同样方法合成化合物2b~2g。

2a:黄色油状物,产率:60%,1H NMR (CD3COCD3,300 MHz)δ: 2.46 (s, 3H,N-CH3), 2.67 (d,J= 9.0 Hz, 1H, pyrrolidinyl-H), 3.11-3.21 (m, 3H, pyrrolidinyl-H), 3.95 (s, 3H,N-CO2-CH3), 4.05 (s, 3H, 2′-OCH3), 4.16-4.24 (m, 1H, pyrrolidinyl-H), 6.37 (d,J=7.5 Hz, 1H), 6.52-6.58 (m, 2H), 6.71-6.80 (m, 1H), 6.95-7.04 (m, 2H), 7.31 (d,J= 7.5 Hz, 1H), 7.69 (d,J= 8.1 Hz, 1H);13C NMR (CD3COCD3, 75 MHz)δ: 42.0, 48.1, 53.8, 54.5, 57.5, 60.2, 68.7, 108.9, 113.5, 110.1, 124.3, 125.0, 125.9, 128.1, 129.4, 129.5, 130.7, 139.2, 149.7, 156.6, 179.2。 HR MS(ESI) calculated for C21H22N2O4[M+Na]+: 389.1477, found: 389.1479。

2b:黄色油状物,产率:58%,1H NMR (CD3COCD3,300 MHz)δ: 2.12 (s, 3H, 3′-CH3), 2.54 (s, 3H,N-CH3), 2.93 (d,J= 9.3 Hz, 1H, pyrrolidinyl-H), 3.17-3.25 (m, 1H, pyrrolidinyl-H), 3.31(d,J= 9.3 Hz, 1H, pyrrolidinyl-H), 3.34-3.44 (m, 1H, pyrrolidinyl-H), 4.00-4.08 (m, 4H, pyrrolidinyl-H andN-CO2-CH3), 6.63-6.82 (m, 3H), 6.79-6.95 (m, 2H), 7.05-7.08 (m, 1H), 7.17-7.18 (m, 1H), 7.58 (d,J= 7.5 Hz, 1H);13C NMR (CD3COCD3, 75 MHz)δ: 21.4, 42.3, 55.1, 55.4, 59.7, 59.4, 66.4, 114.1, 123.7, 124.6, 125.1, 127.5, 127.7, 127.8, 128.5, 130.1, 137.3, 138.6, 149.1, 178.2。 HR MS(ESMS) calculated for C21H22N2O3[M+Na]+: 373.1528, found: 373.1527。

2c:黄色油状物,产率:60%,1H NMR (CD3COCD3, 300 MHz)δ: 2.17 (s, 3H, 4′-CH3), 2.54 (s, 3H,N-CH3), 3.00 (d,J= 9.6 Hz, 1H, pyrrolidinyl-H), 3.20-3.30 (m, 2H, pyrrolidinyl-H), 3.38-3.44 (m, 1H, pyrrolidinyl-H), 4.01-4.08 (m, 4H, pyrrolidinyl-H andN-CO2-CH3), 6.87 (s, 4H), 6.92-6.96 (m, 1H), 7.09-7.12 (m, 1H), 7.18 (d,J= 7.5 Hz, 1H), 7.62 (d,J= 8.1 Hz, 1H);13C NMR (CD3COCD3, 75 MHz)δ: 20.8, 42.1, 54.2, 54.7, 59.4, 60.1, 66.7, 114.5, 123.9, 125.3, 127.8, 127.9, 128.4, 130.1, 134.2, 136.4, 138.8, 149.2, 178.3。HR MS(ESI) calculated for C21H22N2O3[M+H]+: 351.1709, found: 351.1719。

2d:黄色油状物,产率:65%,1H NMR (CD3COCD3, 300 MHz)δ: 2.58 (s, 3H,N-CH3), 3.00 (d,J= 9.0 Hz, 1H, pyrrolidinyl-H), 3.21-3.27 (m, 2H, pyrrolidinyl-H), 3.37-3.43 (m, 1H, pyrrolidinyl-H), 3.88-4.06 (m, 4H, pyrrolidinyl-H andN-CO2-CH3), 6.85 (d,J= 8.7 Hz, 2H), 6.91-6.97 (m, 1H), 7.10-7.18 (m, 4H), 7.60-7.66 (m, 1H);13C NMR (CD3COCD3, 75 MHz)δ: 42.0, 54.3, 54.5, 59.1, 59.7, 66.5, 114.2, 120.8, 123.7, 125.1, 128.1, 130.0, 130.9, 136.7, 138.9, 148.1, 178.0。 HR MS(ESMS) calculated for C20H19BrN2O3[M+H]+: 415.0657, found: 415.0651。

2e:黄色油状物,产率:66%,1H NMR (CD3COCD3,300 MHz)δ: 2.54 (s, 3H,N-CH3), 3.01 (d,J= 9.3 Hz, 1H, pyrrolidinyl-H), 3.14-3.25 (m, 2H, pyrrolidinyl-H), 3.31-3.39 (m, 1H, pyrrolidinyl-H), 3.92-4.01 (m, 1H, pyrrolidinyl-H), 4.02 (s, 3H,N-CO2-CH3), 6.87-6.97 (m, 3H), 7.00 (d,J= 8.7 Hz, 2H), 7.06-7.13 (m, 2H), 7.61 (d,J= 8.4 Hz, 1H);13C NMR (CD3COCD3, 75 MHz)δ: 42.0, 54.2, 54.4, 59.2, 60.0, 66.2, 114.3, 123.8, 125.1, 127.8, 128.1, 128.3, 129.3, 129.7, 132.4, 136.2, 138.8, 149.0, 177.8。HR MS(ESMS) calculated for C20H19ClN2O3[M+Na]+: 393.0982, found: 393.0982。

2f:黄色油状物,产率:67%,1H NMR (CD3COCD3,300 MHz)δ: 2.56 (s, 3H,N-CH3), 3.01 (d,J= 9.0 Hz, 1H, pyrrolidinyl-H), 3.14-3.24 (m, 2H, pyrrolidinyl-H), 3.41-3.51 (m, 1H, pyrrolidinyl-H), 3.89 (s, 3H,N-CO2-CH3), 4.04-4.11 (m, 1H, pyrrolidinyl-H), 7.01 (d,J= 7.2 Hz, 2H), 7.04-7.18 (m, 3H), 7.18-7.25 (m, 1H), 7.27-7.36 (m, 1H), 7.51 (d,J= 8.1 Hz, 1H);13C NMR (CD3COCD3, 75 MHz)δ: 42.1, 54.4, 55.5, 59.1, 66.1 115.8, 116.4, 127.2, 127.9, 128.1, 128.4, 130.4, 132.2, 137.5, 137.9, 148.9, 177.3。HR MS(ESI) calculated for C20H19ClN2O3[M+H]+: 371.1162, found: 371.1167。

2g:黄色油状物,产率:58%,1H NMR (CD3COCD3,300 MHz)δ: 2.34 (s, 3H, 5-CH3), 2.57 (s, 3H,N-CH3), 3.00 (d,J= 9.3 Hz, 1H, pyrrolidinyl-H), 3.20-3.28 (m, 2H, pyrrolidinyl-H), 3.39-3.45 (m, 1H, pyrrolidinyl-H), 4.00 (s, 3H,N-CO2-CH3), 4.04-4.09 (m, 1H, pyrrolidinyl-H), 6.85-6.88 (m, 3H), 7.01-7.13 (m, 4H), 7.51 (d,J= 8.4 Hz, 1H);13C NMR (CD3COCD3, 75 MHz)δ: 21.2, 42.1, 54.4, 55.2, 59.4, 60.0, 66.4, 114.2, 123.9, 125.2, 126.7, 127.8, 127.9, 130.0, 137.5, 138.9, 149.0, 178.2。 HR MS(ESI) calculated for C21H22N2O3[M+Na]+: 373.1528, found: 373.1528。

2 结果

以N-甲氧基羰基-3-芳环烯基氧化吲哚作为起始原料,通过与多聚甲醛和肌胺酸原位生成的1,3-偶极子的[3+2]环加成反应,有效合成7个未见文献报道的吡咯螺环氧化吲哚类化合物(2a~2g),产率为58%~67%,具体合成路线见图1。并采用1H NMR,13C NMR和HRMS等技术确定了产物结构。

图1 吡咯螺环氧化吲哚的合成路线

3 讨论

通过对底物的扩展,该反应无论氧化吲哚3-取代苯环上是吸电子或给电子取代(2a~2e),还是邻位、间位或对位取代(2a~2c),都能在无催化剂甲苯作溶剂,通过与多聚甲醛和肌胺酸原位生成的1,3-偶极子的[3+2]环加成反应,取代基对产率没明显影响。此外,3-取代氧化吲哚吲哚环上为给电子或吸电子取代(2f~2g),对产率也没有明显影响。该方法提供了一种有效合成吡咯螺环氧化吲哚类化合物的方法,不仅反应条件温和,反应时间短,产率较高,而且实验操作简单,分离容易。

[参考文献]

[1] Lo M M C, Neimann C S, Nagayama S, et al.A library of spirooxindoles based on a stereoselective three-component coupling reaction [J].J Am Chem Soc, 2004,126(49):16077-16086.

[2] Hanessian S, Bayrakdarian M.Pyrrolidine as a cogwheel-like scaffold for the deployment of diverse functionality through cycloaddition reactions of metallo-1,3-dipoles in aqueous media [J].Bioorg Med Chem Lett, 2000, 10(5): 427-431.

[3] Hanessian S, Bayrakdarian M.Solution- and solid-phase asymmetric synthesis of substituted N-hydroxypyrrolidine dicarboxylic acids [J].Tetrahedron Lett,2002,43(51):9441-9444.

[4] MacClean D, Schullek J R, Murphy M M,et al.Encoded combinatorial chemistry: Synthesis and screening of a library of highly functionalized pyrrolidines [J].Proc Natl Acad USA, 1997, 94(7): 2805-2810.

[5] Trost B M, Brennan M K,Zhang T,et al.Asymmetric Syntheses of Oxindole and Indole Spirocyclic Alkaloid Natural Products.Asymmetric Syntheses of Oxindole and Indole Spirocyclic Alkaloid Natural Products [J].Synthesis,2009,18:3003-3025.

[6] Dideberg O, Lamotte-Brassrur J, Dupont L, et al.Structure cristalline et moléculaire d'un nouvel alcalōide bisindolique: complexe moléculaire 1:2 strychnofoline-ethanol (C30H34N4O2.2C2H6O) [J].Acta Crystallogr Sect B, 1977, 33(6): 1796-1801.

[7] Marti C, Carreira E M.Construction of Spiro[pyrrolidine-3,3′-oxindoles]-Recent Applications to the Synthesis of Oxindole Alkaloids [J].Eur J Org Chem,2003,12:2209-2219.

[8] Liu J, Sun H, Liu X, et al.Direct construction of novel exo′-selective spiropyrrolidine bisoxindoles via a three-component 1,3-dipolar cycloaddition reaction [J].Tetrahedron Lett, 2012, 53(18): 2336-2340.

[9] Tan B, Zeng X, Long W W Y, et al.Core Structure-Based Design of Organocatalytic [3+2]-Cycloaddition Reactions: Highly Efficient and Stereocontrolled Syntheses of 3,3′-Pyrrolidonyl Spirooxindoles [J].Chem Eur J,2012, 18(1): 63-67.

[10] Huang A, Kodanko J, Overman L E, et al.Asymmetric Synthesis of Pyrrolidinoindolines.Application for the Practical Total Synthesis of (-)-Phenserine[J].Am Chem Soc, 2004, 126(43):14043-14053.

猜你喜欢
吡咯状物吲哚
新型氟硼二吡咯纳米粒子荧光探针的合成与性能
吲哚美辛肠溶Eudragit L 100-55聚合物纳米粒的制备
HPV16E6与吲哚胺2,3-二氧化酶在宫颈病变组织中的表达
高导电率聚吡咯薄膜制备工艺探究
聚吡咯/膨胀石墨复合材料的电磁屏蔽性能研究
吲哚骨架7位的羟基化研究
金属催化下吲哚7位的修饰
活灵活现,惟妙惟肖——如何写好状物类文章
适应性驯化选育高产吡咯喹啉醌的生丝微菌突变株
思维可视,让“写清楚”有迹可循——以教学状物作文“我的植物朋友”为例