番石榴抗坏血酸合成酶基因在果实发育过程中表达特性分析

2024-08-24 00:00:00萧允艺赵晓梦刘金丰于泽浩刘杰凤林丽静
南方农业学报 2024年2期
关键词:番石榴基因表达抗坏血酸

摘要:【目的】测定番石榴果实发育过程中的抗坏血酸含量,并分析番石榴抗坏血酸合成酶基因的表达特性,为后续深入挖掘果实抗坏血酸合成调控机理及选育优质番石榴品种提供理论参考。【方法】以番石榴品种珍珠果实为研究对象,测定不同果实发育(花后10~130 d)过程中果肉(鲜重)中抗坏血酸含量及单果抗坏血酸总量,并从番石榴基因组数据中挖掘其抗坏血酸合成途径酶基因,通过实时荧光定量PCR检测其在果实发育过程中的表达特性。【结果】珍珠番石榴品种果实发育成熟周期为130d,生长速率出现2个高峰期,分别出现在幼果膨大期和大果膨大期,果实果皮颜色从深绿色向浅绿转变,在花后110 d果皮颜色转变最明显。番石榴果肉抗坏血酸含量在果实发育成熟前期(花后10~40 d)保持在较高水平,特别是在花后30 d,果肉抗坏血酸含量达132 mg/100 g,在花后40~100 d抗坏血酸含量稍微下降但较稳定,保持在102.73 mg/100 g以上,成熟后期随果实迅速膨大而抗坏血酸含量略有下降,为84.39 mg/100 g,但单果抗坏血酸总量持续上升。从番石榴基因组数据共鉴定获得13个基因编码果实抗坏血酸合成途径相关酶的基因,这些基因编码完整L-半乳糖途径的相关酶,其中有6个基因集中于3号染色体,推测3号染色体是番石榴果实维生素合成的关键染色体。实时荧光定量PCR检测结果显示,除磷酸甘露糖异构酶基因(PgPMII)和甘露糖磷酸变位酶基因(PgPMMI)在果实发育成熟过程中表达不规律外,其余11个L-半乳糖途径相关酶基因均在果实发育中期上调表达,后期表达又下调。果实抗坏血酸含量与GDP-甘露糖焦磷酸化酶基因(PgGMP1)和GDP-甘露糖-3,5'-表型异构酶基因(gGME2)表达显著正相关(Plt;0.05)。【结论】番石榴果实抗坏血酸积累与其合成途径基因的完整性及表达水平密切相关,推测由9类酶组成的L-半乳糖途径存在复杂的分子调控网络,挖掘获得的13个L-半乳糖途径成员,可用于后续番石榴优良品种的选育及转录调控机理研究。

关键词:番石榴;抗坏血酸;果实发育;基因表达

中图分类号:S667.903.6文献标志码:A文章编号:2095-1191(2024)02-0422-10

Expression characteristics ofascorbic acid synthase gene in guava fruit during fruit development

XIAO Yun-yi¹,ZHAO Xiao-meng¹,LIU Jin-feng',YU Ze-hao',LIU Jie-feng',LIN Li-jing?\"

('College of Biological and Food Engineering,Guangdong University of Petrochemical Technology,Maoming,Guangdong 525000,China;²Institute of Agricultural Products Processing,Chinese Academyof Tropical Agricultural Sciences/

Hainan Key Laboratory of Fruit and VegetableStorageand Processing,Zhanjiang,Guangdong 524001,China)

Abstract:[Objective]The content of ascorbic acid during the development of guava fruit was determined and the expression characteristics of ascorbic acid synthase gene in guava were analyzed,which provided theoretical reference for further exploring the regulation mechanism of fruit ascorbic acid synthesis and breeding guavavarieties with high quality.【Method】The fruit of guava variety Pearl was used as the research object to determine the content of ascorbic acid in the flesh(fresh weight)and thetotal amount of ascorbic acid in single fruit during the development of different fruits(10-130d after anthesis).The ascorbate synthesis pathway enzyme genes were obtained from the genomic data of guava,and their expression characteristics during the development of fruit were detected by real-time fluorescence quantitative PCR.【Result】The ripening period of Pearl guava variety was 130 d,and the growthrate showed two peaks,which appeared in theyoung fruit expansion stage and the large fruit expansion stage,respectively.The color of the fruit peel changed from dark green to lightgreen,and thecolor change was the most obvious at 110 d after flowering.The content of ascorbicacid in guava flesh remained at ahigh level in the early stage of fruit development and ripening(10-40 d after flowering),es-pecially at 30 d after flowering,the contentof ascorbic acid in guava flesh reached 132 mg/100 g,and slightly decreased but remained stable at more than 102.73 mg/100 g at 40-100 d after flowering.The ascorbic acid content decreased slightly with the rapid expansion of fruit in the late ripening period,to 84.39 mg/100 g,but the total ascorbic acid content of single fruit continued to increase.A total of 13 genes encoding enzymes related to fruit ascorbate synthesis pathway were obtained fromguava genome data,and these genes encoded complete L-galactose pathway related enzymes,among which 6 genes were concentrated in chromosome 3,suggesting that chromosome 3 was the key chromosome for vitamin synthesis in guava fruit.Real-time fluorescence quantitative PCR results showed that except for the iregular expression of phosphomannose isomerase gene(PgPMII)and phosphomannomutase gene(PgPMMI)during fruit development and maturation,the expression of the other 11 L-galactose pathway related enzyme genes was up-regulated in the middle stage of fruit development,and down-regulated in the later stage.The content of ascorbic acid in fruit was significantly posi- tively correlated with the expression of GDP-mannose pyrophosphorylase gene(PgGMP1)and GDP-mannose-3',5'-epime- rase gene(PgGME2)(Plt;0.05).【Conclusion】The accumulation of ascorbic acid in guava fruits is closely related to the in- tegrity and expression level of the synthesis pathway genes.It is speculated that the L-galactose pathway composed of 9 enzymes has acomplex molecular regulatory network.The 13 members of L-galactose pathway obtained by mining can be used for subsequent breeding of excellent guava varieties and transcriptional regulation mechanism research.

Keywords:guava;ascorbic acid;fruit development;gene expression

Foundation items:National Natural Science Foundation of China(31901733);Guangdong Universities Key Areas Special Project(2020ZDZX1056);Guangdong Universities Characteristic Innovation Project(2023KTSCX090);Open Project of Hainan Key Laboratory of Fruit and Vegetable Storage and Processing(HNGS202201)

0引言

【研究意义】番石榴(Psidium guajava Linn.)又名鸡矢果,因其果实中丰富的抗坏血酸而备受关注,享有“热带苹果”之美称(Feng et al.,2021)。抗坏血酸又名维生素C,具有强抗氧化活性,可保护人体活性细胞组织免受自由基的影响,增强人体免疫力,在维护人体健康方面起着至关重要的作用,尤其对预防和治疗动脉硬化性心血管疾病和高血压、中风等疾病有显著效果(Radi et al.,2020;Sunnetci et al.,2020;Vasques et al.,2023),且促进胶原质的形成,使皮肤紧致(Maione-Silva et al.,2019)。此外,抗坏血酸对植物生理生化具有多方面的影响,如有丝分裂、细胞膨大、衰老和抵抗逆境等(Xiang et al.,2020;Deng et al.,2022;Liao et al.,2023)。由于人类自身无法合成抗坏血酸(Nishikimi et al.,1994),食用新鲜水果是人们获得抗坏血酸的主要途径之一。因此,研究番石榴果实发育过程中富集抗坏血酸的分子机理,对挖掘热带水果营养与保健机理具有重要指导意义。【前人研究进展】目前植物抗坏血酸生物合成有4条途径,即Smirnoff-Wheeler(L-半乳糖)途径(Wheeler et al.,1998)、半乳糖醛酸途径(Agius et al.,2003)、古洛糖途径(Wolucka and van Montagu,2003)和肌醇途径(Lorence et al.,2004)。植物抗坏血酸生物合成的L-半乳糖途径由9类酶组成,包括磷酸葡萄糖异构酶(PGI)、甘露糖-6-磷酸异构酶(PMI)、甘露糖磷酸变位酶(PMM)、GDP-甘露糖焦磷酸化酶(GMP)、GDP-甘露糖-3',5'-表型异构酶(GME)、GDP-L-半乳糖磷酸化酶(GGP)、L-半乳糖-1-磷酸磷酸酶(GPP)、L-半乳糖脱氢酶(GalDH)、L-半乳糖-1,4-内酯脱氢酶(GLDH),其中GME和GGP是调节抗坏血酸生物合成的关键步骤(陈卫芳等,2023;王壮壮等,2023)(图1)。目前已从拟南芥中筛选出多个抗坏血酸缺陷型突变体(vtcl、vtc2、vtc3、vtc4和vtc5),除VTC3基因,其余基因均被克隆并确认是L-半乳糖合成途径的基因(Conklin et al.,1999,2006,2013;Gao et al.,2011),说明L-半乳糖途径是植物体内抗坏血酸合成的最主要途径。刺梨L-半乳糖途径成员GLDH、GGP、GPP和GME响应果实发育成熟基因的表达水平明显提高,与果实抗坏血酸含量也明显提高(Yan et al.,2015)。猕猴桃品种红阳果实成熟发育过程中AcPMII、AcPMMI1、AcGMP1、AcGME1、AcGGPI、AcGPP1和AcGPP2基因表达水平显著下降,果实抗坏血酸含量也逐渐下降(Zhang et al.,2018)。类似的研究结果还有甜樱桃品种红灯,果实成熟过程中抗坏血酸含量下降与其合成酶相关基因(GPI、PMI、PMM、GMP、GME、GPP、GGP1、GGP2、GalDH、GalLDH)表达量下降密切相关(Liang et al.,2017)。随着番石榴品种新世纪基因组测序完成,进一步证明了番石榴果实抗坏血酸合成的主导途径为L-半乳糖途径(Feng et al.,2021),该途径的基因成员齐全,但其他3条合成途径(半乳糖醛酸途径、古洛糖途径、肌醇途径)均缺乏部分关键基因。【本研究切入点】虽然已有研究证明L-半乳糖途径是番石榴果实抗坏血酸合成的主导途径,但未见有关番石榴果实抗坏血酸合成途径(L-半乳糖途径)成员在果实成长发育过程中的表达特性及其与果实抗坏血酸积累的研究报道。【拟解决的关键问题】筛选番石榴基因组数据,获得L-半乳糖途径的所有基因成员,分析其在间隔10 d的果实生长发育过程中的表达特性,为后续深入挖掘果实抗坏血酸合成调控机理及选育优质番石榴品种提供理论参考。

1材料与方法

1.1试验材料

供试材料为番石榴品种珍珠的果实,采自茂名市新安镇化州市化润农业有限公司果园。在果实盛花期挂牌,选用10棵番石榴树,每棵树挂牌标记至少15个果实,花后130d果实发育成熟,每隔10d采摘果实(每棵树采摘1个果,共10个)后立即运回实验室,测量果实的重量,并拍照,然后果肉切成小块并用液氮速冻,并置于-80℃冰箱保存备用。

主要试剂:Solarbio抗坏血酸含量检测试剂盒购自广州鼎国生物技术有限公司;HifairⅢ1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)、Hieff UNICON°qPCR SYBR Green Master Mix(抗体法,No Rox)试剂购自翌圣生物科技(上海)股份有限公司;其他生化试剂均购自生工生物工程(上海)股份有限公司。主要仪器设备:GelDocTM EZ image凝胶成像仪(美国Bio-Rad公司)、CFX96荧光定量PCR仪(美国Bio-Rad公司)、LSHW-500D立式恒温振荡器(北京亚泰科隆仪器技术有限公司)、GL-21MC冷冻离心机(湖南湘仪离心机仪器有限公司)、A₁1研磨机(德国IKA公司)和多功能酶标仪[美谷分子(Molecular Devices)仪器(上海)有限公司]。

1.2试验方法

1.2.1果肉抗坏血酸含量测定取3 g果肉样品,在液氮中研磨至粉状,再称取约0.1 g组织按Solar-bio抗坏血酸含量检测试剂盒说明书进行抗坏血酸含量测定,使用多功能酶标仪测量样品吸光值(波长

265 nm),计算每100 g果肉(鲜重)中抗坏血酸含量(mg/100 g),并计算单个果实中抗坏血酸总含量(mg)。

1.2.2总RNA提取和反转录使用热硼酸法提取果实总RNA(Wan et al.,1994),称取约3 g果实样品,液氮下研磨成粉,加入5mL 80℃预热的提取液[0.2 mol/L十水硼酸钠,30 mmol/L乙二醇双(2-氨乙基醚)四乙酸(EGTA),1%十二烷基硫酸钠(SDS),1%脱氧胆酸钠,2%PVP-40,0.5%NP-40,0.1%二硫苏糖醇(DTT)],并加入0.5 mg的蛋白酶K,于42℃下振荡提取2 h,然后加入0.6 mL 2 mol/L氯化钾溶液于4℃下放置1 h后离心沉淀蛋白,上清液通过加入1/3体积的8 mol/L氯化锂溶液过夜沉淀RNA,最后经过2 mol/L氯化锂溶液清洗沉淀,再经过0.5 mL Tris-HCl(10 mmol/L,pH 7.5)缓冲液溶解沉淀后加入50μL 2 mol/L醋酸钾,通过乙醇沉淀并清洗RNA,真空干燥后加入无RNase水溶解RNA,-80℃冻存。通过1%琼脂糖凝胶电泳检测总RNA完整性,取1μg总RNA为模板,使用HifairⅢ1st Strand cDNA Synthesis SuperMix for qPCR(gDNA digester plus)反转录试剂盒中的DNase I去除样品中残留的DNA,再以Random primers/Oligo(dT)18混合引物反转录合成番石榴cDNA第一链,cDNA稀释20倍后置于-20℃冰箱保存备用。

1.2.3番石榴抗坏血酸合成途径构建基因图谱

通过番石榴基因组数据(https:/ftp.ncbi.nlm.nih.gov/genomes/genbank/plant/Psidium_guajaval),使用在线基因图谱软件MG2C(http://mg2c.iask.in/mg2c_v2.1/)绘制相关基因的图谱(Chao et al.,2015)。

1.2.4引物设计及合成采用Primer Premier 5.0

设计PgPGII、PgPGI2、PgPGI3、PgPMII、PgPMM1、PgGMP1、PgGME1、PgGME2、PgGGP1、PgGGP2,PgGPP1、PgGalDH1和PgGLDH1基因的荧光定量PCR引物并委托生工生物工程(上海)股份有限公司广州分公司合成(表1)。

1.2.5实时荧光定量PCR检测选用PgActin为内参基因(Sulistio et al.,2022),选用HieffUNICON qPCR SYBR Green Master Mix试剂,扩增程序:95℃预变性30 s;95℃,10s,60℃,30s,进行40个循环。基因相对表达量采用2~0方法进行计算(宋国华等,2014),每个样品设3个重复,将花后10d定义为1个单位作为对照。最后对目的基因在花后果实不同发育时期的表达模式进行分析。

1.3统计分析

采用IBM SPSS Statistics 27.0进行单因素方差显著性分析及数据相关分析,通过Sigmaplot 12.0作图。

2结果与分析

2.1番石榴果实发育变化及增长速率分析结果

供试番石榴品种珍珠于11月5日谢花,翌年3月15日成熟,果实发育成熟周期为130 d,成熟番石榴果实形态偏梨形,果实生长发育过程中,果皮颜色从深绿色向浅绿转变,在花后110d果皮颜色转变最明显(图2)。番石榴单果重从花后10d的1.7g到花后130d的376.9 g(图3-A),共有2个果实生长发育高峰期,呈现双S形生长趋势(图3-B)。单果增长速率可分为3个阶段:幼果膨大期、小果生长缓慢期和大果膨大期,幼果膨大期为开花后10~40 d,峰值出现在花后20 d,果实增重明显;小果生长缓慢期为花后50~90 d,该阶段果实生长缓慢,果实增重不显著(Pgt;0.05);大果膨大期为花后100~130 d,该阶段果实进入膨大期,单果增长速率显著加快(Plt;0.05,下同),峰值在花后120 d(图3-B)。

2.2番石榴果实发育过程中果肉抗坏血酸含量变化

番石榴果肉抗坏血酸含量在果实发育成熟前期(花后10~40 d)保持在较高水平,特别是在花后30 d,果肉抗坏血酸含量达132 mg/100 g,后续果肉抗坏血酸含量稍微下降,但在花后50~100 d抗坏血酸含量较为稳定,保持在稍高于102.73 mg/100 g,然而自花后120 d开始果实迅速膨大,抗坏血酸含量降低,果实成熟时(花后130 d)抗坏血酸含量为84.39 mg/100 g(图4-A)。番石榴果实发育过程中,单果重量升高,虽然果肉抗坏血酸含量呈上下波动,但单果抗坏血酸总量持续上升,并在花后110 d显著升高(图4-B)。

2.3番石榴抗坏血酸合成途径相关酶基因图谱分析结果

通过比较番石榴转录组数据和基因组数据,共获得13个编码果实抗坏血酸合成途径相关酶

蛋白的基因,分别命名为PgPGI1、PgPGI2、PgPGI3、PgPMI1、PgPMM1、PgGMP1、PgGME1、PgGME2、PgGGPI、PgGGP2、PgGPPI、PgGalDHI和PgGLDHI,

花后天数(d)Days after anthesis

其中PgPGII、PgPGI2、PgPGI3、PgPMII、PgPMMI和

PgGMP1为果实抗坏血酸合成前体相关酶基因,涉及果糖和甘露糖代谢;PgGMEI、PgGME2、PgGGPI、PgGGP2、PgGPP1、PgGalDHI和PgGLDH1为果实抗坏血酸合成后期相关酶基因,这些合成前后期基因成员编码完整L-半乳糖途径相关酶,证实L-半乳糖途径是番石榴抗坏血酸合成的主导途径。通过基因图谱分析发现,13个抗坏血酸合成途径相关酶基因中,有6个基因集中分布在3号染色体上,2号和7号染色体上均分布2个基因,4号、5号和10号染色体上各有1个基因,其他染色体上未存在基因分布(图5),推测3号染色体是番石榴果实抗坏血酸合成的关键染色体。

2.4番石榴果实发育成熟过程中抗坏血酸合成途径关键酶基因表达特性

番石榴果实发育成熟过程中,抗坏血酸合成途径关键酶基因表达特性如图6所示。果实抗坏血酸合成途径中,PgPGI1、PgPGI2和PgPGI3基因编码PGI,能使磷酸葡萄糖转变为磷酸果糖,在果实发育后期基因的相对表达量均显著下降,与果肉抗坏血酸含量(图4)呈正相关。PgGMP1基因也呈现相似的表达模式,其编码的GMP能催化D-甘露糖-1-磷酸合成GDP-D-甘露糖。另外,PgPMII和PgPMMI基因在果实发育成熟过程中表达不规律。PgGME1和PgGME2能催化GDP-D-甘露糖生成GDP-L-半乳糖,是在糖核苷水平上植物抗坏血酸生物合成的第一步,PgGMEI和PgGME2基因在果实成熟后期表达也明显下降。果实抗坏血酸合成的L-半乳糖途径的其他基因成员(PgGGP1、PgGGP2、PgGPP1、PgGalDH1和PgGLDH1)均在果实发育后期表达显著降低。

2.5番石榴抗坏血酸合成途径关键酶基因表达与抗坏血酸含量的相关分析结果

相关分析结果(表2)显示,果实生长发育过程中,只有PgGMP1和PgGME2基因表达与果肉抗坏血酸含量显著正相关,推测其原因是抗坏血酸含量变化滞后,同时抗坏血酸参与果实生长代谢,果实呼吸过程中也会氧化或分解。

3讨论

富含抗坏血酸水果存在较高的加工和保健商品价值,因此果实抗坏血酸合成及调控研究也逐渐受到人们的关注。植物抗坏血酸合成存在组织特异性,同一植物不同组织之间抗坏血酸含量存在差异,如嘎拉苹果鲜叶片中抗坏血酸含量超过500 mg/100 g,然而果肉抗坏血酸含量低于5mg/100 g(Mellidou et al.,2012)。此外,植物抗坏血酸合成还存在品种差异,张丽梅等(2019)对33份番石榴种质资源进行分类,结果发现果肉抗坏血酸含量为50.39~115.44 mg/100 g,可分为六大类,其中番石榴品种珍珠归第4类(82.35~87.68 mg/100 g),与本研究测定数据相似。本研究结果显示,番石榴品种珍珠在不同生长发育时期果肉抗坏血酸含量变化不大,幼果膨大期比130 d成熟果的含量稍高,与番石榴品种新世纪的研究结果(Feng et al.,2021)存在明显差异,其果实抗坏血酸含量随着果实生长发育逐步上升,从幼果抗坏血酸含量57.20 mg/100 g升至中期果的188.69 mg/100g,最后成熟果达551.66 mg/100 g,存在差异的原因可能是品种差异及测量方法不同。

富含抗坏血酸的植物果实及其合成酶相关基因表达一直备受关注。享有“维生素C大王”的刺梨果实中发现14个抗坏血酸合成相关基因,且证实其高抗坏血酸积累与合成基因的高表达密切相关(Huang et al.,2014)。结合转录组测序和实时荧光定量PCR检测结果,共发现刺梨中存在15个参与果实抗坏血酸合成的基因(Yan et al.,2015)。其他富含抗坏血酸水果如樱桃(Liang et al.,2017)、猕猴桃(Zhang et al.,2018)、菠萝(Léchaudel et al.,2018)、辣椒(Chiaiese et al.,2019)、梨(Xing et al.,2019a)、苹果(Lemmens et al.,2020)、甜玉米(Xiang et al.,2020)等也陆续有果实发育过程中抗坏血酸合成相关分子机理的研究报道。番石榴品种珍珠是广东主栽番石榴品种,本研究结合基因组和转录组数据,共发现参与番石榴L-半乳糖途径的13个关键成员,与刺梨(Yan et al.,201)、甜樱(Liang et al.,2017)等其他水果抗坏血酸合成途径成员数量相当。番石榴果实富含抗坏血酸,因为果实抗坏血酸合成途径(L-半乳糖途径)完整,且基因成员在果实发育过程中保持表达,并在花后70~90 d出现小高峰,推测其维持果实抗坏血酸合成相关酶水平,从而保持果实抗坏血酸含量不至于因为果实迅速膨大而显著下降。基因表达与抗坏血酸含量相关分析结果发现,只有PgGMP1和PgGME2基因表达与果肉抗坏血酸含量显著正相关,其他11个L-半乳糖途径成员表达与抗坏血酸含量无显著相关性。樱桃果实中PacGPI、PacPMI、PacPMM、PacGMP、PacGME、PacGGP1、PacGGP2、PacGPP、PacGalDH和PacGalLDH基因表达与果实抗坏血酸含量也呈不显著相关(Liang et al.,2017)。上述结果间接说明果实发育成熟过程中物质代谢的复杂性,基因可能存在转录后修饰或蛋白水平调控,另外果肉抗坏血酸含量亦受其他因素影响,如氧化代谢与分解。

果肉抗坏血酸含量在果实发育过程中受一系列因素影响,如果实膨大,光照、温度、土肥以及病虫害等。光照可刺激抗坏血酸生物合成的L-半乳糖途径,通过诱导途径基因表达,使植物组织中抗坏血酸含量增加(Ntagkas et al.,2018)。Jiang等(2018)研究发现,茄子抗坏血酸合成相关基因SmGMP、SmGME1、SmGME2、SmGGP、SmGPP、SmGalDH和SmGLDH的启动子中存在大量光响应元件,从而受光诱导。本研究供试番石榴取样于秋末至初春,日照时间于中期最短,而中期抗坏血酸含量有所下降,推测抗坏血酸合成与光照时间密切相关。番茄果实低温胁迫下,抗坏血酸生物合成相关酶基因GAILDH、GME和GPP均响应低温诱导表达上升,从而促进抗坏血酸的积累(Ioannidi et al.,2009;Tsaniklidis et al.,2014),因番石榴种植所处位置温度未达到低温胁迫要求,未见果实抗坏血酸含量因温度变化而出现显著差异。本研究挖掘了番石榴抗坏血酸合成途径的成员,为四季成花成果的番石榴品质形成及贮藏保鲜过程中品质的保持提供研究对象及思路。

植物抗坏血酸的积累除受外界环境影响外,还受到内在转录调控因子影响。AMR1(F-box蛋白)是从拟南芥臭氧处理突变体库中筛选出的第1个抗坏血酸合成调控因子,AMR1可负调控L-半乳糖途径中GMP、GME、GGP、GPP、GalDH和GLDH基因的表达水平从而调控抗坏血酸含量(Zhang et al.,2009)。AtERF98是拟南芥中的第2个抗坏血酸合成控因子,瞬时表达和染色质免疫沉淀(ChIP)试验也证明了AtERF98可结合VTCI基因启动子上的顺式作用元件DRE-2,正向调控VTCI基因表达,从而正向调控拟南芥抗坏血酸合成(Zhang et al.,2012)。ABI4转录因子直接结合到抗坏血酸生物合成途径关键基因VTC2的启动子上,抑制VTC2基因转录,从而阻碍抗坏血酸的生物合成(Kakan et al.,2021)。番茄作为果实抗坏血酸合成调控研究的模式植物,研究发现番茄的SIHZ24(HD-ZIP转录因子)可通过正向调控SIGMP3基因的表达来正向调控抗坏血酸的积累(Hu et al.,2016),另外,SlbHLH59转录因子直接结合于SIPMM、SIGMP2和SIGMP3基因启动子,同样促进抗坏血酸积累(Ye et al.,2019),后续挖掘获得抗坏血酸合成正调控因子SIDof22(Caiet al.,2016)及负调控因子SINFYA10(Chen et al.,2020)和SIEIL2(Chen et al.,2023)。类似的研究还有杜梨抗坏血酸合成激活子PbrMYB5(Xing et al.,2019b)、猕猴桃抗坏血酸合成激活子AceMYBS 1(Liu et al.,2022)。本研究通过实时荧光定量PCR检测番石榴珍珠果实在发育成熟过程13个抗坏血酸合成途径关键酶基因的表达特征,为后续挖掘其中的转录调控具有指导意义,如抗坏血酸合成关键酶基因PgGMEI和PgGME2在果实发育后期(大果膨大期)表达显著下降,推测其受相关转录因子调控,从而影响果实抗坏血酸含量。后续应以抗坏血酸合成关键酶基因启动子为突破口,酵母单杂交筛选番石榴果实酵母单杂文库,深入挖掘番石榴果实抗坏血酸合成转录调控机制。

4结论

番石榴果实抗坏血酸积累与其合成途径基因的完整性及表达水平密切相关,推测由9类酶组成的L-半乳糖途径存在复杂的分子调控网络,挖掘获得的13个L-半乳糖途径成员,可用于后续番石榴优良品种的选育及转录调控机理研究。

参考文献(References):

陈卫芳,袁伟玲,刘志雄,严承欢,陈磊夫,张文格.2023.植物抗坏血酸合成调控研究进展[J].植物生理学报,59(3):481-489.[ChenWF,Yuan WL,Liu ZX,Yan CH,Chen LF,Zhang WG.2023.Research progress on regulation of ascorbic acid synthesis in plant[J].Plant Physiology Jour nal,59(3):481-489.]doi:10.13592/j.cnki.ppj.300120

宋国华,高继萍,王春芳,刘茂林,王裕.2014.相对定量2-^~法分析Caspase-3和Caspase-9在氟诱导大鼠肾脏中的表达[J].毒理学杂志,28(4):274-278.[Song GH,Gao J"P,Wang CF,Liu ML,Wang Y.2014.Relative quantita-tive detection of Caspase-3 and Caspase-9 mRNA expres-sion of kidney in rats induced with fluoride[J].Journal of Toxicology,28(4):274-278.]doi:10.16421/j.cnki.1002-3127.2014.04.020.

王壮壮,董邵云,周琪,苗晗,刘小萍,徐奎鹏,顾兴芳,张圣平.2023.黄瓜果实维生素C合成关键基因克隆与分析[J].中国农业科学,56(3):508-521.[Wang ZZ,Dong S"Y,Zhou Q,Miao H,Liu XP,Xu KP,GuXF,Zhang SP 2023.Cloning and analysis of key genes for vitamin Csyn-"thesis in cucumber fruit[J].Scientia Agricultura Sinica,56(3):508-521.]doi:10.3864/j.issn.0578-1752.2023.03.009.张丽梅,张朝坤,陈洪彬,陈钟佃.2019.番石榴种质资源果实性状的聚类分析[J].中国南方果树,48(6):53-58.[Zhang LM,Zhang CK,Chen HB,Chen ZD.2019.Cluster"analysis of fruit traits of guava germplasm resources[J].South China Fruits,48(6):53-58.]doi:10.13938/j.issn.1007-1431.20180586.

Agius F,Gonzalez-Lamothe R,Caballero JL,Munoz-Blanco J,Botella MA,Valpuesta V.2003.Engineering increased vitamin Clevels in plants by overexpression of aD-galacturonic acid reductase[J].Nature Bioechnology,21(2):177-181.doi:10.1038/nbt777.

Cai XF,Zhang CJ,Shu WB,Ye ZB,Li HX,Zhang YY 2016.The transcription factor SIDof 22 involved in ascor-bate accumulation and salinity stress in tomato[J].Bio-chemical and Biophysical Research Communications,474(4):736-741.doi:10.1016/j.bbrc.2016.04.148

Chao JT,KongYZ,Wang Q,Sun YH,Gong DP,Lv J,Liu GS.2015.MapGene2Chrom,a tool to draw gene physical map based on Perl and SVG languages[J].Hereditas,37(1):91-97.doi:10.16288/j.yczz.2015.01.013

Chen C,Zhang M,Zhang MY,Yang MM,DaiS S,Meng QW,Lv W,Zhuang KY.2023.ETHYLENE-INSENSITIVE 3-LIKE 2 regulates β-carotene and ascorbicacid accumula-tion in tomatoesduring ripening[J].Plant Physiology,192(3):2067-2080.doi:10.1093/plphys/kiad151.

Chen WF,Hu TX,Ye J,Wang B,Liu GZ,Wang Y,Yuan L,LiJM,Li FM,Ye ZB,Zhang YY.2020.A CCAAT-binding factor,SINFYA10,negatively regulates ascorbate accumulation by modulating the D-mannose/L-galactose pathway in tomato[J].Horticulture Research,7(1):200.doi:10.1038/s41438-020-00418-6.

Chiaiese P,Corrado G,Minutolo M,Barone A,Errico A.2019.Transcriptionalregulationof ascorbic acid during fruitripe-ning in pepper(Capsicum anmum)varieties with low and high antioxidants content[J].Plants(Basel),8(7):206.doi:10.3390/plants8070206.

Conklin PL,DePaolo D,Wintle B,Schatz C,Buckenmeyer G.2013.Identification of Arabidopsis VTC3 as aputativeand unique dual function protein kinase:Protein phosphatase involved in the regulation ofthe ascorbic acid pool in plants[J].Journal of Experimental Botany,64(10):2793-2804.doi:10.1093/jxb/ert140.

Conklin PL,Gatzek S,Wheeler GL,Dowdle J,RaymondMJ,Rolinski S,Isupov M,Littlechild JA,Smirnoff N.2006

Arabidopsis thaliana VTC4 encodes L-galactose-1-Pphos-phatase,a plant ascorbic acid biosynthetic enzyme[J].Jour-nal of Biological Chemistry,281(23):15662-15670.doi:10.1074/jbc.M601409200.

Conklin PL,Norris SR,Wheeler GL,Williams EH,Smirnoff N,Last RL.1999.Genetic evidence for the role of GDP-mannose in plant ascorbic acid(vitamin C)biosynthesis[J].Proceedings of the National Academy of Sciences of the United States of America,96(7):4198-4203.doi:10.1073/pnas.96.7.4198.

Deng HH,Xia H,GuoYQ,Liu XL,Lin LJ,Wang J,XuK F,Lv XL,Hu RH,Liang D.2022.Dynamic changes in ascorbic acid content during fruit development and ripe-ning of Actinidia latifolia(an ascorbate-rich fruit crop)and the associated molecular mechanisms[J].International Journal of Molecular Sciences,23(10):5808.doi:10.3390/ijms 23105808.

Feng C,Feng C,Lin XG,Liu SH,LiYZ,Kang M.2021.A chromosome-level genome assembly provides insights into ascorbic acid accumulation and fruit softening in guava(Psidium guajava)[J].Plant Biotechnology Journal,19(4):717-730.doi:10.1111/pbi.13498.

Gao YS,BadejoAA,Shibata H,Sawa Y,Maruta T,Shigeoka S,Page M,Smirnoff N,Ishikawa T.2011.Expression analysis of the VTC2 and VTC5 genes encoding GDP-L-galactose phosphorylase,an enzyme involved in ascorbate"biosynthesis,in Arabidopsis thaliama[J].Bioscience Bio-technology and Biochemistry,75(9):1783-1788.doi:10.1271/bbb.110320.

Hu TX,YeJ,Tao PW,LiHX,ZhangJ,Zhang Y,Ye Z.2016.The tomato HD-Zip Itranscription factor SIHZ24 modu-lates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway[J].Plan Journal,85(1):16-29.doi:10.1111/tpj.13085.

Huang M,Xu Q,Deng XX.2014.L-ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose(Rosa roxburghii Tratt)[J].Journal of Plant Physiology,171(14):1205-1216.doi:10.1016/j.jplph.2014.03.010

Ioannidi E,Kalamaki MS,Engineer C,PaterakiI,Alexandrou D,Mellidou I,GiovannonniJ,Kanellis AK.2009.Expres sion profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions[J].Journal of Experimental Botany,60(2):663-678.doi:10.1093/jxb/erm322.

Jiang M,LiuY,Ren L,She X,Chen HY.2018.Light regulates ascorbic acid accumulation and ascorbic acid-related genes expression in thepeel of eggplant[J].South African Jour-nal of Botany,114:20-28.doi:10.1016/j.sajb.2017.10.012.

Kakan X,Yu YW,LiS H,LiXY,Huang RF,Wang J.2021.Ascorbic acid modulation by ABI4 transcriptional repres-sion of VTC2 in the salt tolerance of Arabidopsis[J].BMC Plant Biology,21(1):112.doi:10.1186/s12870-021-02882-1.

Lemmens E,Alós E,Rymenants M,De Storme N,Keulemans WJ.2020.Dynamics of ascorbic acid content in apple"(Malus×domestica)during fruit development and storage"[J].Plant Physiology and Biochemistry,151:47-59.doi 10.1016/j.plaphy.2020.03.006.

Liang D,Zhu T,NiZ,Lin L,Tang Y,Wang Z,Wang X,Wang J,Lv X,Xia H.2017.Ascorbic acid metabolism during"sweet cherry(Prums avium)fruit development[J].PLoS"One,12(2):e172818.doi:10.1371/journal.pone.0172818.Liao GL,Xu Q,Allan AC,Xu XB.2023.L-ascorbic acid"metabolism and regulation in fruit crops[J].Plant Physio-logy,192(3):1684-1695.doi:10.1093/plphys/kiad241.

Liu X,Wu R,Bulley SM,Zhong C,Li D.2022.Kiwifruit MYBS1-like and GBF3 transcription factors influence L-ascorbic acid biosynthesis by activating transcription of GDP-L-galactose phosphorylase 3[J].New Phytologist,234(5):1782-1800.doi:10.1111/nph.18097

Lorence A,Chevone BI,Mendes P,Nessler CL.2004.Myo-inositol oxygenase offers apossible entry point into plant ascorbate biosynthesis[J].Plant Physiology,134(3):1200-1205.doi:10.1104/pp.103.033936.

Léchaudel M,Darnaudery M,Joet T,Fournier P,Joas J.2018 Genotypic and environmental effects onthe level of ascor-bic acid,phenolic compounds and related gene expression during pineapple fruit development and ripening[J].Plant Physiology andBiochemistry,130:127-138.doi:10.1016/j.plaphy.2018.06.041.

Maione-Silva L,de Castro EG,Nascimento TL,Cintra ER,Moreira LC,Cintra BA S,Valadares MC,Lima EM.2019.Ascorbic acid encapsulated into negatively charged liposomes exhibits increased skin permeation,retention and enhances collagen synthesis by fibroblasts[J].Scien-tific Reports,9(1):522.doi:10.1038/s41598-018-36682-9.

Mellidou I,Chagné D,Laing WA,Keulemans J,Davey MW 2012.Allelic variation in paralogs of GDP-L-galactose phosphorylase is amajor determinant of vitaminCconcen-trations in apple fruit[J].Plant Physiology,160(3):1613-1629.doi:10.1104/pp.112.203786.

Nishikimi M,Fukuyama R,Minoshima S,Shimizu N,Yagi K.1994.Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase,the enzyme for L-ascorbic acid biosynthesis missing in man[J].Journal of Biological Chemistry,269(18):13685-13688.doi:10.1016/0009-3084(94)02321-2.

Ntagkas N,Woltering EJ,Marcelis LF M.2018.Light regu lates ascorbate in plants:An integrated view on physiology andbiochemistry[J].Environmental andExperimental Bo-tany,147:271-280.doi:10.1016/j.envexpbot.2017.10.009.

Radi AM,Mohammed ET,Abushouk AI,Aleya L,Abdel-Daim MM.2020.The effects of abamectin on oxidative stress and gene expression in rat liver and brain tissues:Modulation by sesame oil and ascorbic acid[J].Science of the Total Environment,701:134882.doi:10.1016/j.scito-tenv.2019.134882.

Sulistio M,Chao C,Chen C,Wu CT.2022.Nonclimacteric‘Jen-Ju Bar'guava ripening behavior iscaused by Copia LTR retrotransposon insertion in the promoter region of PgACSI,a System-2 ACC synthase gene[J].Postharvest Biology and Technology,193:112038.doi:10.1016/j.post-harvbio.2022.112038.

SunnetciS E,Erbas 0.2020.The ameliorative effects of ascor-bic acid on critical illness polyneuropathy in rodentsepsis model[J].Journal ofPediatric Intensive Care,9(4):265-270.doi:10.1055/s-0040-1710587.

Tsaniklidis G,Delis C,Nikoloudakis N,Katinakis P,Aivalakis G.2014.Low temperature storage affects the ascorbic acid metabolism of cherry tomato fruits[J].Plant Physiology and Biochemistry,84:149-157.doi:10.1016/j.plaphy.2014.09.009.

Vasques LI,Vendruscolo CW,Leonardi GR.2023.Topical application of ascorbic acid and its derivatives:A review considering clinical trials[J].Current Medicinal Chemis-try,30(29):3272-3286.doi:10.2174/0929867329666221003102238.

Wan CY,Wilkins TA.1994.A modified hot borate method sig-nificantly enhances the yield of high-quality RNA from"cotton(Gossypium hirsutmm L.)[J].Analytical Biochemis-try,223(1):7-12.doi:10.1006/abio.1994.1538.

Wheeler GL,Jones MA,Smirnoff N.1998.The biosynthetic pathway of vitamin Cin higher plants[J].Nature,393(6683):365-369.doi:10.1038/30728.

Wolucka BA,van Montagu M.2003.GDP-mannose 3',5'-epi-merase formsGDP-L-gulose,aputative intermediate forthe de novo biosynthesis of vitamin Cinplants[J].Journal of Biological Chemistry,278(48):47483-47490.doi:10.1074/jbc.M309135200

Xiang N,Hu J,Wen T,Brennan MA,Brennan CS,Guo X.2020.Effects of temperature stress on the accumulation of ascorbic acid and folates in sweet corn(Zea mays L.)seedlings[J].Journal of the Science of Food and Agricul-ture,100(4):1694-1701.doi:10.1002/jsfa.10184.

Xing C,Liu Y,Zhao L,Zhang S,Huang X.2019a.A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance[J].Plant Cell and Environment,42(3):832-845.doi:10.1111/pce.13387.

Xing C,Liu Y,Zhao L,Zhang S,Huang X.2019b.A novel MYB transcription factor regulates ascorbic acid synthesis and affects cold tolerance[J].Plant Cell and Environment,42(3):832-845.doi:10.1111/pce.13387.

Yan X,Zhang X,Lu M,He Y,An H.2015.De novo sequen-cing analysis of the Rosa roxburghii fruit transcriptome revealsputative ascorbate biosynthetic genes and EST-SSR markers[J].Gene,561(1):54-62.doi:10.1016/j.gene.2015.02.054.

Ye J,LiWF,Ai G,LiCX,Liu GZ,ChenWF,Wang B,Wang WQ,Lu YG,Zhang JH,LiHX,Ouyang B,Zhang HY,Fei ZJ,Giovannoni JJ,Ye ZB,Zhang YY.2019.Genome-wide association analysis identifies anatural variation in basic helix-loop-helixtranscription factor regu-lating ascorbate biosynthesis via D-mannose/L-galactose pathway in tomato[J].PLoS Genetics,15(5):e1008149.doi:10.1371/journal.pgen.1008149.

Zhang JY,Pan DL,JiaZH,Wang T,Wang G,Guo ZR.2018.Chlorophyll,carotenoid and vitamin Cmetabolism regula-tion in Actimidia chinensis‘Hongyang'outerpericarp du-ring fruit development[J].PLoSOne,13(3):e194835.doi:10.1371/journal.pone.0194835.

ZhangWY,Lorence A,Gruszewski HA,ChevoneBI,Nessler CL.2009.AMR1,anArabidopsis gene that coordinately and negatively regulates the mannose/L-galactose ascorbic acid biosynthetic pathway[J].Plant Physiology,150(2):942-950.doi:10.1104/pp.109.138453.

Zhang ZJ,WangJ,Zhang RX,Huang RF.2012.The ethylene response factor AtERF98enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis[J].Plant Journal,71(2):273-287.doi:10.1111/j.1365-313X.2012.04996.x.

(责任编辑 陈燕)

猜你喜欢
番石榴基因表达抗坏血酸
中国番石榴主要品种
番石榴的选购与保存
益寿宝典(2018年31期)2018-11-19 06:39:26
草莓番石榴果实化学成分的研究
中成药(2017年12期)2018-01-19 02:06:41
抗菌肽对细菌作用机制的研究
基因芯片在胃癌及肿瘤球细胞差异表达基因筛选中的应用
美洲大蠊提取液对大鼠难愈合创面VEGF表达影响的研究
二甲基砷酸毒理学的研究进展
抗坏血酸的电化学研究
高效液相色谱法同时测定水果蔬菜中L-抗坏血酸、D-异抗坏血酸、脱氢抗坏血酸及总维生素C的含量
抗坏血酸-(荧光素+CTMAB+Cu2+)化学发光检测尿液的尿酸
应用化工(2014年11期)2014-08-16 15:59:13