不同饲养方式对南江黄羊肠道菌群结构及血清免疫指标的影响

2024-08-24 00:00:00张小明张婷婷张贞贞李菁菁赵旺生
南方农业学报 2024年2期
关键词:肠道菌群

摘要:【目的】探究不同饲养方式对南江黄羊肠道菌群结构和血清免疫指标的影响,为开展南江黄羊集约化舍饲养殖提供参考依据。【方法】选取体重相近、健康状况良好的3月龄南江黄羊公羊32只,随机分为2组,每组16只,分别进行放牧饲养(FMGF)和圈舍饲养(SSGF),预饲期7 d,正饲期60 d。正饲期第60 d每组随机选取6只南江黄羊,无菌采集直肠粪便样品,通过Ilumina HiSeq探析不同饲养方式下南江黄羊肠道菌群结构差异;同时采集颈静脉血样,通过ELISA检测血清免疫球蛋白(IgA、IgG和IgM)和血清免疫因子(IL-2、IL-4、JL-6和TNF-α)。【结果]FMGF组南江黄羊血清中的IgM含量显著高于SSGF组南江黄羊(Plt;0.05,下同),而TNF-α含量显著低于SSGF组南江黄羊。FMGF组南江黄羊肠道菌群的Chaol指数显著低于SSGF组南江黄羊。在门分类水平上,FMGF组和SSGF组的优势菌门均为厚壁菌门和拟杆菌门;髌骨细菌门和浮酶菌门在FMGF组的相对丰度极显著高于SSGF组(Plt;0.01,下同),弯曲菌门、梭杆菌门和纤维杆菌门则表现为FMGF组的相对丰度显著低于SSGF组。在属分类水平上,FMGF组和SSGF组的优势菌属分别是理研菌科_RC9_菌群和克里斯滕森菌科_R-7_菌群;FMGF组相对丰度极显著高于SSGF组的菌属有念珠菌属、丁酸弧菌属、厌氧支原体属及假丁酸弧菌属等;FMGF组相对丰度极显著低于SSGF组的菌群有大肠杆菌一志贺菌属、阿克曼西亚属及拟杆菌属等。IgM含量与乳杆菌属相对丰度呈极显著负相关,与奈瑟菌属和拟杆菌属的相对丰度呈显著负相关;TNF-a含量与单杆菌属和p-1088-a5_gut_group的相对丰度呈极显著负相关。【结论】与舍饲相比,放牧能促使南江黄羊血清中IgM含量升高及TNF-α含量降低,并显著提高肠道中疣微菌门和脱硫杆菌门等有益菌群丰度,同时抑制弯曲菌门和梭杆菌门等有害菌群繁殖。可见,放牧对南江黄羊的免疫性能和肠道有益菌群结构有明显的正向影响。

关键词:南江黄羊;饲养方式;血清免疫指标;肠道菌群;相对丰度

中图分类号:S827.4文献标志码:A文章编号:2095-1191(2024)02-0334-12

Effects of different feeding methods on the intestinal flora struc-ture and serum immune indexes of Nanjiang yellow goat

ZHANG Xiao-ming',ZHANG Ting-ting²,ZHANG Zhen-zhen',LI Jing-jing', ZHAO Wang-sheng\"

('School of Life Science and Engineering,Southwest University of Science and Technology,Mianyang,Sichuan 621010,China;²Key DisciplineLaboratory of National Defense for Nuclear Waste and Environmental Security,Southwest University of Science and Technology,Mianyang,Sichuan 621000,China)

Abstract:[Objective]To explore the effects of different feeding methods on the intestinal microbiota structure and se-rum immune indexes of Nanjiang yellow goat,this study aimed to offer insights for the optimal managementand breeding practices of Nanjiang yellow goat.【Method]Thirty-two 3-month-old Nanjiang yellow goat,matched in body weight and health status,were randomly divided into 2 groups of 16 goats in each group,and subjected to either free-range grazing(FMGF)or enclosure feeding(SSGF).A pre-feeding period of 7 dwas followed by a 60-day normal feding period.On the 60#d of the normal feeding period,6 Nanjiang yellow goat were randomly selected from each group,and rectal fecal samples were collected aseptically.Illumina HiSeq was used to analyze the variations in intestinal flora structure of Nan-iang yellow goat under different feeding methods.Blood samples were obtained from the jugular vein to detect serum im-munoglobulins(IgA,IgG and IgM)and serum immune factors(IL-2,IL-4,IL-6 and TNF-α)using ELISA method.[Result]The IgM content in serum of FMGF group was significantly higher than that of the SSGF group(Plt;0.05,the same below),and the TNF-a content was significantly lower in SSGF group compared to the SSGF group.The Chaol in-dex of intestinal flora of Nanjiang yellow goat in FMGF group was significantly lower than that in SSGF group.At the phyla classification level,Firmicutes and Bacteroidota were identified as the dominant phylum in both the FMGF group and SSGF group.The relative abundances of Patescibacteria and Planctomycetota were extremely significantly higher in FMGF group compared to the SSGF group(Plt;0.01,the same below),whereas the relative abundances of Campylobacte-rota,Fusobacteriota and Fibrobacterota in FMGF group weresignificantly lower than those in SSGF group.At the level of genus classification,the dominant bacterial genera in FMGF group and SSGF group were Rikenellaceae_RC9_gut_group and the Christensenellaceae_R-7_group,respectively.The relative abundance of bacteria inFMGF group was found to be extremely significantly higherthan that in the SSGF group,with genera such as Andidatis_Saccharimonas,Butyrivibrio, Anaeroplasma and Pseudobutyrivibrio.Conversely,therelative abundance of bacteria in the FMGF group was extremely significantly lower than that in the SSGF group,with genera such as Escherichia-Shigella,Akkermansia and Bacteroides IgM content wasextremely significantly negativelycorrelated with the relative abundance of Lactiplantibacillus,and was significantly negatively correlated with the relative abundance of Neiseria and Bacteroides.TNF-a content was extremely significantly negatively correlated with the relative abundance of Solobacterium and p-1088-a5_gut_group.【Conclusion】In comparison to house feeding,grazing can elevate IgM contents and reduce TNF-a contents in the serum of Nanjiang yellowgoat.Additionally,grazing enhances the presence of beneficial bacteria,such as Errucmicrobiota and Desulfobac-terota,in the intestinal tract,while simultaneously inhibiting the growth of harmful bacteria,such as Campylobacterota and Fusobacteriota.In conclusion,grazing has demonstrated substantial positive impacts on the immune function and in-testinalbeneficial microbiota compositionof Nanjiang yellow goat.

Key words:Nanjiang yellow goat;feeding method;serum immune index;intestinal flora;relative abundance Foundation items:National Natural ScienceFoundation Project(32260824)

0引言

【研究意义】南江黄羊是我国第一个经多年杂交选育而成的肉用山羊品种(何佳桧等,2022),因肉质蛋白含量高、脂肪和胆固醇含量低,而深受消费者青睐(何向东等,2023)。肠道微生物群是存在于肠道中数百万种微生物的集合体,可影响宿主的生理、免疫和健康状况,反之,宿主的健康状况及活动也会导致肠道微生物组成发生变化(Lynch and Pedersen,2016;Shapira,2016;Kurilshikov et al.,2017)。肠道微生物包括各种病毒、细菌、真菌和原生动物,以共生、共栖或寄生的关系与宿主相互作用,从而维持和稳定肠道环境平衡(Aziz et al.,2012;John and Mul-lin,2016;Dabke et al.,2019;裴利君等,2021)。不同饲养管理方式会导致动物肠道菌群的多样性和功能存在差异,并影响其健康状况(Dande et al.,2015;Song et al.,2020)。因此,探讨不同饲养方式下的南江黄羊肠道菌群结构及血清免疫指标,可为扩大南江黄羊养殖规模提供基础数据。【前人研究进展】已有研究表明,放牧反刍动物的肠道微生物多样性明显高于舍饲反刍动物(Fu et al.,2022;Wen et al.,2022),如放牧牦牛胃肠道中拟杆菌门在瘤胃到十二指肠部位的相对丰度升高,而厚壁菌门在空肠到直肠部位的相对丰度升高(Han et al.,2021),舍饲牦牛粪便微生物在门分类水平上表现为拟杆菌门丰度升高、厚壁菌门丰度下降(Zhu et al.,2022)。Sun等(2020)研究发现,野生麝粪便微生物中的厚壁菌丰度高于舍饲麝,而拟杆菌和螺旋体的丰度低于舍饲麝;Wang等(2020)研究表明,放牧蒙古绵羊的肠道拟杆菌属丰度高于舍饲蒙古绵羊,而普雷沃氏菌属丰度低于舍饲蒙古绵羊;张星星等(2021)研究发现,舍饲组和放牧组的夏洛莱牛肠道微生物结构与组成存在显著差异,放牧组夏洛莱牛肠道微生物具有更强的纤维消化能力;谭占坤等(2022)研究证实,放牧藏猪肠道部分菌群在属分类水平上的丰度显著高于舍饲藏猪。此外,肠道菌群通过参与各种形式的宿主反应,在肠道屏障、营养代谢和免疫力等方面发挥重要作用(Tremaroli and Bäckhed,2012;舒迎霜等,2020;Wang et al.,2022)。贾立军等(2018)研究发现,放养松辽黑猪血清免疫球蛋白及细胞因子水平均显著高于圈养松辽黑猪;王柏辉等(2018)研究表明,放牧条件下肠道菌群结构更有利于短链脂肪酸的产生和多不饱和脂肪酸的沉积,从而提高羊肉的营养价值;Li等(2021)研究证实,增加膳食纤维摄入量可调节肠道菌群结构及降低血清促炎因子水平。综上所述,不同饲养方式对畜禽的肠道微生物结构、生长状态及血清免疫指标均会产生极大影响。【本研究切入点】至今,有关南江黄羊肠道微生物的研究鲜见报道,不同饲养方式对南江黄羊肠道菌群和血清免疫指标的影响也尚未明确。【拟解决的关键问题】以3月龄的南江黄羊公羊为研究对象,对比分析不同饲养方式下的肠道菌群结构及血清免疫指标,为开展南江黄羊集约化舍饲养殖提供参考依据。

1材料与方法

1.1试验动物

从四川巴中南江黄羊原种场选取体重(10.78±0.96 kg)相近、健康状况良好的3月龄南江黄羊公羊,共32只,随机分为放牧饲养(FMGF)组和圈舍饲养(SSGF)组,每组16只。FMGF组南江黄羊每天7:00—19:00期间进行放牧,放牧期间自由采食(槐树叶、榆树叶、紫穗槐及苜蓿草等)和饮水。SSGF组南江黄羊分为2个独立圈舍,每个圈舍随机分配8只,每日饲喂全混合日粮(TMR),其配方参照何向东等(2023)的研究方法;每日分2次(8:00和17:00)饲喂,自由饮水。试验预饲期7d,正饲期60 d。除饲养方式不同外,温度、湿度等其他饲养管理条件基本一致。动物试验由西南科技大学实验动物伦理委员会批准,批准号L2022030。

1.2样品采集与处理

正饲期第60d早上7:00,分别从每组中随机选取6只南江黄羊,使用一次性无菌手套从直肠采集粪便样品,装入冻存管,编号后立即投入液氮中冷冻保存,运回实验室转存于-80℃冰箱。同时,以无添加剂采血管采集颈静脉血样10 mL,放入冰盒静置30 min后,3500r/min离心10 min,收集血清,-20℃保存备用。

1.3血清免疫指标测定

血清免疫球蛋白(IgA、IgG和IgM)和血清免疫因子(IL-2、IL-4、IL-6和TNF-a)测定采用购自南京建成生物工程研究所的ELISA试剂盒,按照试剂盒说明进行操作。

1.416S rRNA扩增测序及多样性分析

将粪便样品送至杭州联川生物技术股份有限公司完成16S rRNA测序分析。通过十六烷基三甲基溴化铵(CTAB)法提取粪便样本微生物组总DNA,采用1.0%琼脂糖凝胶电泳检测DNA提取质量,并以紫外分光光度计进行定量分析。选用引物341F(5-CCTACGGGNGGCWGCAG-3')和805R(5-GAC TACHVGGGTATCTAATCC-3)扩增微生物16SrRNA序列V3~V4可变区,PCR反应体系25.0μL:DNA模板50 ng,Phusion Hot Start Flex 2×缓冲液12.5μL,上、下游引物各2.5μL,dH₂O补足至25.0μL。扩增程序:98℃预变性30 s;98℃10 s,54℃30 s,72℃45s,进行27个循环;72℃延伸10 min。PCR扩增产物经2.0%琼脂糖凝胶电泳检测后,采用AMPure XT Beads回收试剂盒进行纯化回收。纯化后的PCR扩增产物采用Agilent 2100生物分析仪(美国Agilent公司)和Illumina文库定量试剂盒(美国Kapa Biosciences公司)进行评估,合格的文库浓度应在2 nmoVL以上。合格的测序文库(Index序列不可重复)进行梯度稀释,经NaOH处理变性为单链后使用NovaSeq 6000测序仪进行2×250 bp的双端测序。对测序获得的原始数据进行拆分、拼接、过滤和DADA2去噪,获得扩增子序列变异体(Amplicon sequence variants,ASVs)特征序列和丰度表格,然后用R语言(v3.6.0)进行Alpha多样性和Beta多样性分析。根据ASVs序列文件,基于SILVA数据库进行物种注释,依据ASVs丰度表统计各物种在各样本中的相对丰度,并以曼—惠特尼U检验(Mann-Whitney UTest)进行两组间的差异分析。

1.5统计分析

试验数据以Excel 2020进行统计整理,采用SPSS 26.0进行单因素方差分析(One-way ANOVA)并以GraphPad Prism 9绘图。同时,选取部分血清免疫指标与属分类水平上命名准确且相对丰度显著差异的前30个菌群,通过Spearman检验进行关联分析。

2结果与分析

2.1南江黄羊血清免疫指标测定结果

通过SPSS 26.0对FMGF组和SSGF组的南江黄羊血清免疫指标进行显著性分析,结果(图1)表明,FMGF组南江黄羊血清中的IgM含量显著高于SSGF组南江黄羊(Plt;0.05,下同)、TNF-a含量则显著低于SSGF组南江黄羊;FMGF组南江黄羊血清中的IgA、IgG、L-2和IL-4含量低于SSGF组南江黄羊,IL-6含量则高于SSGF组南江黄羊,但差异均不显著(Pgt;0.05,下同)。

2.2南江黄羊粪便16S rRNA测序分析结果

2.2.1样品测序深度及菌群Alpha多样性分析结果Alpha多样性分析结果如图2-A和图2-B所示,Goods coverage和Observed-ASVs稀释曲线趋向平缓并最终进入平台期,说明此次测序深度达到研究标准,测序结果能充分反映当前样本所包含的菌群多样性,样品测序深度能覆盖肠道中的大部分菌种,测序结果可用于后续数据分析。此外,FMGF组南江黄羊肠道菌群Chaol指数显著低于SSGF组南江黄羊(图2-C),而Shannon指数低于SSGF组南江黄羊,但差异不显著(图2-D)。

2.2.2样品组间Beta多样性分析结果根据粪便样品测序结果分别进行主成分分析(PCA)和主坐标分析(PCoA),坐标中不同颜色代表不同分组,2个样品间距离越近说明样品间的微生物组成结构越相似,距离越远则说明样品间的微生物组成结构差异越大,通过PCA分析和PCoA分析可判断样品组内和组间的差异。由图3可知,FMGF组和SSGF组南江黄羊肠道菌群分别在图中的不同位置发生聚类,且2组菌群组成结构差异极显著(Plt;0.01)。

2.2.3肠道菌群Venn分析结果根据测序结果,对南江黄羊肠道菌群ASVs进行聚类分析并绘制Venn图。在门分类水平上,FMGF组和SSGF组共含有27个ASVs,其中,共有ASVs为22个,SSGF组特有ASVs为5个(图4-A)。在属分类水平上,FMGF组和SSGF组共含有482个ASVs,其中,共有ASVs为246个,FMGF组特有ASVs为47个,SSGF组特有ASVs为189个(图4-B)。

2.2.4样品菌群组成分析结果在门分类水平上(图5-A),厚壁菌门(Firmicutes)和拟杆菌门(Bacte-roidota)在FMGF组(52.93%+32.21%)和SSGF组(62.34%+27.31%)中的总相对丰度均超过80.00%,是南江黄羊肠道的主要菌群,其他相对丰度较高的菌群还有变形菌门(Roteobacteria)(FMGF组1.86%,SSGF组3.08%)、髌骨细菌门(Patescibacteria)(FMGF组4.50%,SSGF组0.61%)、疣微菌门(Errucmicro-biota)(FMGF组2.27%,SSGF组1.11%)、脱硫杆菌门(Desulfobacterota)(FMGF组2.85%,SSGF组0.87%)和放线菌门(Ctinobacteriota)(FMGF组1.06%,SSGF组1.29%)。FMGF组的厚壁菌门与拟杆菌门比值为1.64,低于SSGF组的2.64。

在属分类水平上(图5-B),FMGF组和SSGF组中相对丰度均大于5.00%的菌属有理研菌科_RC9_菌群(Rikenellaceae_RC9_gut_group)(FMGF组8.14%,SSGF组6.83%)和克里斯滕森菌科_R-7_菌群(Chris-tensenellaceae_R-7_group)(FMGF组5.69%,SSGF组7.32%),在2组中相对丰度均较高的菌属还有NK4A214_group(FMGF组3.72%,SSGF组6.12%)、普雷沃氏菌属(Reotella)(FMGF组5.82%,SSGF组4.60%)、奎因氏菌属(Uinella)(FMGF组2.91%,SSGF组3.54%)和脱硫弧菌属(Esulfovibrio)(FMGF组3.25%,SSGF组1.06%)。

2.2.5样品菌群丰度差异分析结果在门分类水平上(图6),FMGF组相对丰度极显著高于SSGF组的菌门有髌骨细菌门和浮酶菌门(Planctomyce-tota),FMGF组相对丰度显著高于SSGF组的菌门有装甲菌门(Armatimonadota)、疣微菌门和脱硫杆菌门,而FMGF组相对丰度显著低于SSGF组的菌门有弯曲菌门(Campylobacterota)、梭杆菌门(Fusobac-teriota)和纤维杆菌门(Fibrobacterota)。

在属分类水平上(图7),FMGF组相对丰度极显著高于SSGF组的菌属有念珠菌属(Andidatus_Sac-charimonas)、丁酸弧菌属(Butyrivibrio)、厌氧支原体属(Anaeroplasma)、假丁酸弧菌属(Pseudobutyrivi-brio)、p-1088-a5_gut_group、普雷沃氏菌科_NK3B31_群(Prevotellaceae_NK3B31_group)、单杆菌属(Solo-bacterium)和毛螺菌科_AC2044_群(Lachnospira-ceae_AC2044_group),相对丰度显著高于SSGF组的菌属有脱硫弧菌属和普雷沃氏菌科_UCG-003(Prevotellaceae_UCG-003);FMGF组相对丰度极显著低于SSGF组的菌属有乳杆菌属(Lactiplantibacil-lus)、单球属(Monoglobus)、大肠杆菌一志贺菌属(Escherichia-Shigella)、阿克曼西亚属(Akkermansia)、拟杆菌属(Bacteroides)和双歧杆菌属(Bifidobacte-rium),相对丰度显著低于SSGF组的菌属有NK4A214_group、链球菌属(Streptococcus)、Family_XIII_AD3011_group、奈瑟菌属(Neisseria)、潘托亚属(Pantoea)和纤维杆菌属(Fibrobacter)。

2.3肠道菌群丰度与血清免疫指标的相关性

根据肠道微生物测序结果,选取在属分类水平上相对丰度呈显著差异的前30个菌属,去除未分类的菌属后,与血清免疫指标进行相关分析。由图8可知,IgM含量与乳杆菌属在肠道中的相对丰度呈极显著负相关,与奈瑟菌属和拟杆菌属在肠道中的相对丰度呈显著负相关;TNF-α含量与单杆菌属和p-1088-a5_gut_group在肠道中的相对丰度呈极显著负相关,与普雷沃氏菌科_NK3B31_群和丁酸弧菌属在肠道中的相对丰度呈显著负相关,与拟杆菌属、双歧杆菌属、大肠杆菌一志贺菌属、乳杆菌属、单球属在肠道中的相对丰度呈显著正相关;IL-6含量与奈瑟菌属在肠道中的相对丰度呈极显著负相关,与念珠菌属和毛螺菌科_AC2044_群在肠道中的相对丰度呈显著正相关。

3讨论

3.1不同饲养方式对南江黄羊血清免疫指标的影响

免疫球蛋白由机体免疫系统中的淋巴细胞产生,是参与体液免疫的重要物质,其中IgA、IgG和IgM等3种免疫球蛋白是免疫应答反应中发挥主要作用的抗体,其在血清中的浓度可间接反映机体抵抗外源刺激或病菌入侵的能力(赵晓雅等,2022)。细胞因子由多种细胞产生,在非特异性免疫调节和炎症反应中发挥重要作用,其中,IL-2诱导T淋巴细胞增殖和分化,IL-4增强体液免疫应答,而IL-6和TNF-a是促炎性细胞因子,能增强细胞免疫应答(Veldhoen and Ferreira,2015;马丽娜等,2022;赵晓雅等,2022)。环境因素和饮食结构会影响机体免疫结构及细胞的成熟与功能(Veldhoen and Ferreira, 2015)。李勤等(2011)研究表明运动量是影响血液免疫指标的主要因素;苑妞妞等(2023)通过研究舍饲与半舍饲对娟姗牛血清生化指标的影响,结果发现半舍饲娟姗牛血清中的IgM含量显著高于舍饲娟姗牛。本研究结果也表明,FMGF组南江黄羊血清中的IgM含量显著高于SSGF组南江黄羊,究其原因可能是FMGF组南江黄羊血清中IL-6含量增加,促进机体免体系统产生IgM;也可能是FMGF组南江黄羊的营养水平相对于SSGF组南江黄羊更丰富且其运动量相对于圈舍饲养更大,从而促使南江黄羊血清中IgM含量升高。TNF-α具有多种免疫系统功能,但其作为机体应激反应过程产生和释放最早的炎症介质过量分泌时,不仅造成组织损伤,还会诱导其他炎症因子释放,最终损伤机体免疫功能(石璐璐等,2020)。魏凤仙等(2013)研究表明,圈舍空气中氨气及硫化氢等有害气体含量高于室外环境,易引起机体产生免疫代偿而引起机体炎性因子增多。在本研究中,SSGF组南江黄羊血清中的TNF-α含量显著高于FMGF组南江黄羊,可能是SSGF组南江黄羊圈舍内空气中的有害气体高于圈舍外,南江黄羊长期吸入有害气体导致体内炎症发生,而引起TNF-α含量升高。

3.2不同饲养方式对南江黄羊肠道微生物组成结构和丰度的影响

肠道菌群是一个开放的生态系统,与宿主以互利共生的形式相互作用、协同进化,其特有的群落结构及代谢产物对调节宿主的新陈代谢和免疫力,以及抵抗病原体等功能至关重要(Kuziel and Rakoff-Nahoum,2022)。已有研究表明,肠道菌群结构受饮食习惯、年龄、宿主健康状态及宿主所处环境等共同影响(Lynch and Pedersen,2016;Shapira,2016;Kurilshikov et al.,2017)。本研究通过对FMGF组和SSGF组南江黄羊的肠道菌群结构进行对比,结果发现不同饲养模式对肠道菌群结构和丰度的影响明显,与张星星等(2021)的研究结果一致。厚壁菌门和拟杆菌门是反刍动物胃肠道菌群中含量最高的优势菌门。胃肠道中的厚壁菌门可有效分解纤维素和木质素,而拟杆菌门具有分解非纤维复合多糖和维持肠道平衡的功能,二者均与宿主纤维和非纤维食物成分的代谢密切相关(Martinez-Garcia et al.,2012;Gharechahi et al.,2020)。此外,南江黄羊肠道菌群中厚壁菌门和拟杆菌门的总相对丰度超过80.00%,且在FMGF组和SSGF组间的相对丰度无显著差异,表明放牧和舍饲不会影响南江黄羊肠道中厚壁菌门和拟杆菌门的丰度。

在门分类水平上,本研究发现浮游菌门在FMGF组中的相对丰度极显著高于SSGF组。浮游菌门生活在动物肠道中,在碳和氮循环中发挥关键作用(Wang et al.,2021),其相对丰度越高说明肠道对营养物质的吸收利用率越高。疣微菌门在木质纤维素降解方面具有独特作用(Martinez-Garcia et al.,2012),能分泌多种碳水化合物降解酶、肽酶和硫酸酯酶,其中Lentisphaeria和Kiritimatiellae对碳水化合物具有超强的利用能力(Gharechahiet al.,2022)。脱硫杆菌门分解的产物如丁酸盐、硫化氢等可保护胃肠道,并促进食物消化(Zhang et al.,2018)。本研究中,疣微菌门和脱硫杆菌门在FMGF组南江黄羊肠道中的相对丰度显著高于SSGF组南江黄羊,说明放牧能增强南江黄羊肠道菌群对营养物质的分解,促进机体对营养物质的消化吸收及保护肠道健康。弯曲菌门是人类细菌性胃肠炎最常见的病原之一(Sheppard and Maiden,2015),也能引起绵羊、山羊和牛等反刍动物流产(Sahin et al.,2017)。梭杆菌门可在体内外诱导正常上皮细胞发生炎症,也可分泌外膜囊泡而促进肠道炎症(Engevik et al.,2021)。纤维杆菌门会产生一系列纤维素分解酶,将纤维素降解并生成乙酸、丙酸和丁酸,通过三羧酸循环为宿主提供能量(Gharechahi et al.,2020)。本研究中,弯曲菌门和梭杆菌门在FMGF组南江黄羊肠道中的相对丰度显著低于SSGF组南江黄羊,说明放牧对南江黄羊肠道中有害菌群的抑制效果优于舍饲。

在属分类水平上,念珠菌属、丁酸弧菌属、厌氧支原体属、假丁酸弧菌属、普雷沃氏菌科_NK3B31群、单杆菌属和毛螺菌科_AC2044_菌群在FMGF组南江黄羊肠道中的相对丰度极显著高于SSGF组南江黄羊。已有研究表明,念珠菌属在维持正常的肠道功能方面发挥重要作用(Chen et al.,2017);丁酸弧菌属能降解半纤维素,有助于人类和动物完成纤维消化,同时参与蛋白分解和脂肪酸生物氢化(Palevich et al.,2019);厌氧支原体属与肠道的IgA和TGF-β分泌密切相关,并调节肠道炎症(Beller et al.,2020);假丁酸弧菌属在消化道中的功能作用尚未完全了解,但其大量参与碳水化合物、蛋白和脂质的代谢,还具有将复杂多糖分解和重组的功能,是反刍动物获能的主要途径(Pidcock et al.,2021);毛螺菌科能改善肠道炎症,在肠道稳态中发挥重要作用(Zhao et al.,2017)。由此推测,放牧对提高南江黄羊肠道菌群中有益菌属的丰度有显著影响。此外,大肠杆菌一志贺菌属、阿克曼西亚属、链球菌属和奈瑟菌属在FMGF组南江黄羊肠道中的相对丰度极显著低于SSGF组南江黄羊,推测舍饲会增加南江黄羊肠道菌群中有害微生物的丰度,进而损害机体健康。其中,大肠杆菌一志贺菌属是一种致病菌,在酒精性肝硬化患者肠道中常见大肠杆菌—志贺菌属丰度显著增加(Baltazar-Diaz et al.,2022);阿克曼西亚属隶属于疣微菌门,定殖于胃肠道黏液层而刺激黏膜微生物网络,在宿主免疫应答中起重要作用(Macchione et al.,2019);链球菌属与奶牛临床乳腺炎、流产、死产等病变有关(Pan et al.,2018);奈瑟菌属包括致病的淋病奈瑟菌,主要寄生于生殖器、直肠和口腔黏膜,可引起盆腔炎性疾病及不孕症等疾病(Arenas,2022)。

3.3不同饲养方式下南江黄羊肠道菌群丰度与血清免疫指标的相关性

肠黏膜免疫屏障由机械屏障、化学屏障、免疫屏障和微生物屏障构成,可保护宿主免受外来病原微生物的侵袭(Jin et al.,2017)。肠黏膜免疫屏障由体液免疫和细胞免疫组成,肠黏膜中的免疫细胞和细胞因子通过参与先天性免疫和适应性免疫以维持肠道稳态(Chen et al.,2021)。为避免有害的免疫反应,肠道微生物群和肠黏膜相互作用并相互依赖,形成微生态系统——肠黏膜微生物群屏障。在正常情况下,肠道菌群的丰度和多样性处于动态平衡状态,可防止病原体的入侵和定殖,对维持肠黏膜屏障功能至关重要。肠道菌群紊乱可导致细菌易位,破坏肠黏膜屏障功能,从而影响机体健康(Chen et al.,2021;Wang et al.,2022)。本研究中,南江黄羊肠道中乳杆菌属和拟杆菌属的相对丰度与血清中IgM含量呈显著或极显著负相关,与Fidanza等(2021)研究证实乳杆菌属菌群能减轻沙门氏菌引起的肠道损伤及促进部分细胞因子分泌的结论基本一致,即乳杆菌属能显著改善沙门氏菌引起的肠道微生物组紊乱。此外,大肠杆菌一志贺菌属、普雷沃氏菌科_NK3B31_群和单杆菌属的相对丰度与血清中TNF-α含量显著相关。普雷沃氏菌科_NK3B31_群能产生丁酸盐,其缺失会导致肠道屏障功能受损(Huang et al.,2021);拟杆菌属在维持宿主肠道健康及提高宿主对营养物质的消化吸收等方面发挥重要作用(Zafar and Saier,2021)。此外,在丰度有显著差异的前30个菌属中,有16个菌属的相对丰度与IL-6、TNF-a、IgM和IgG的含量呈显著或极显著相关,不同饲养方式对南江黄羊血清免疫指标和肠道微生物丰度的影响也有明显区别。综合血清免疫指标和肠道菌群结构特点,可确定放牧对南江黄羊的免疫性能和肠道有益菌群结构有明显的正向影响。

4结论

与舍饲相比,放牧能促使南江黄羊血清中IgM含量升高及TNF-α含量降低,并显著提高肠道中疣微菌门和脱硫杆菌门等有益菌群丰度,同时抑制弯曲菌门和梭杆菌门等有害菌群繁殖。可见,放牧对南江黄羊的免疫性能和肠道有益菌群结构有明显的正向影响。

参考文献(References):

何佳桧,陈瑜,苗斌.2022.补饲、季节和年龄对南江黄羊繁殖成活率的影响[J].草学,(6):68-71.[He JH,Chen Y,Miao B.2022.Effects of supplementary feeding,season and age on reproductive survival rate ofNanjiang yellow goat[J].Journal of Grassland and Forage Science,(6):68-71.]doi:10.3969/j.issn.2096-3971.2022.06.009.

何向东,张国俊,张敬,刘春梅,黄丽,谭玉祥,张蓉,周琴,蒋康.2023.不同饲喂方式对南江黄羊育肥效果的影响[J].中国畜禽种业,19(2):171-172.[He XD,Zhang GJ,Zhang J,Liu CM,Huang L,TanYX,Zhang R,Zhou Q,Jiang K.2023.Effects of different feeding methods on fattening effect of Nanjiang yellow goat[J].The Chinese Livestockand Poultry Breeding,19(2):171-172.]doi:10.3969/j.issn.1673-4556.2023.02.046.

贾立军,张树敏,柴方红,李娜,李兆华,李航,谢素珠.2018.放养与圈养对松辽黑猪免疫球蛋白和细胞因子水平的影响[J].黑龙江畜牧兽医,(20):76-77.[Jia LJ,Zhangs"M,ChaiF H,LiN,LiZH,LiH,Xie SZ.2018.Effects of"stocking and captivity on immunogobulin and cytokine levels inSongliao black pig[J].Heilongjiang Animal Scien-ce and Veterinary Medicine,(20):76-77.]doi:10.13881j.cnki.hljxmsy.2018.04.0301.

李勤,刘建平,肖国强,李勇.2011.运动强度和运动量对血液免疫指标影响程度的比较研究[J].武汉体育学院学报,45(11):97-100.[LiQ,Liu JP,Xiao GQ,LiY.2011.A comparative study of the influence on the immunocompe-tence index of organisms from exercise intensity and the amount ofexercise[J].Journalof Wuhan Institute of Physi-cal Education,45(11):97-100.]doi:10.3969/j.issn.1000-520X.2011.11.018.

马丽娜,高总元,高海慧,康晓冬,梁小军.2022.饲粮蛋白水平对哺乳期犊牛生长性能、血清生化、免疫与抗氧化指标的影响[J].饲料研究,45(13):12-15.[Ma LN,Gao ZY,Gao HH,Kang XD,Liang XJ.2022.Effects of dietaryprotein levels on growth performance,serum bio-chemistry,immunity and antioxidant indexes of lactating"calves[J].Feed Research,45(13):12-15.]doi:10.13557j.cnki.issn1002-2813.2022.13.003.

裴利君,杨巧丽,王鹏飞,滚双宝.2021.合作猪夏冬季的肠道菌群结构[J].甘肃农业大学学报,56(4):8-15.[Pei LJ,Yang QL,Wang PF,Gun SB.2021.Study on the struc-ture of intestinal microflora in Hezuo pigs in summer and winter[J].Journal of Gansu Agricultural University,56(4):8-15.]doi:10.13432/j.cnki.jgsau.2021.04.002.

石璐璐,王哲奇,徐元庆,毛晨羽,郭世伟,金晓,史彬林.2020.热应激对绵羊血清免疫和抗氧化指标及相关基因相对表达量的影响[J].动物营养学报,32(11):5275-5284.[Shi LL,Wang ZQ,Xu YQ,Mao CY,Guo Sw,Jin X,Shi BL.2020.Effects of heat stress on serum immune and antioxidant indexes and relative expression of related genes in sheep[J].Chinese Journal of Animal Nutri-tion,32(11):5275-5284.]doi:10.3969/j.issn.1006-267x.2020.11.032.

舒迎霜,贺蒙初,桂雪儿,夏晓冬,冯士彬,李玉,王希春,吴金节.2020.黄芪多糖对犬盲肠菌群的影响[J].甘肃农业大学学报,55(2):1-8.[Shu YS,He MC,Gui XE,Xia XD,Feng SB,Li Y,Wang XC,Wu JJ.2020.Effect of Astragalus polysaccharide on cecal flora in canines[J].Journal of Gansu Agricultural University,55(2):1-8.]doi:10.13432/j.cnki.jgsau.2020.02.001.

谭占坤,池福敏,商振达,商鹏,刘锁珠,强巴央宗.2022.放牧藏猪、舍饲藏猪与商品猪粪便真菌群落组成及其与饲粮纤维消化的相关性研究[J].微生物学报,62(1):259-274.[Tan ZK,ChiFM,ShangZ D,Shang P,Liu SZ,Qiang baYangzong.2022.Fungal community in the feces ofgra-zingTibetan pigs,captive Tibetanpigs,and commercial pigsand its interactionwith dietary fiber digestion[J].Acta Microbiologica Sinica,62(1):259-274.]doi:10.13343/j.cnki.wsxb.20210215.

王柏辉,杨蕾,罗玉龙,王宇,袁倩,王德宝,靳烨.2018.饲养方式对苏尼特羊肠道菌群与脂肪酸代谢的影响[J].食品科学,39(17):1-7.[Wang BH,Yang L,Luo YL,Wang Y,Yuan Q,Wang DB,Jin Y.2018.Effect of feeding pat-tern on intestinal flora and fatty acid metabolism in Sunit sheep[J].Food Science,39(17):1-7.]doi:10.7506/spkx 1002-6630-201817001.

魏凤仙,胡骁飞,张敏红,李绍钰,徐彬,蔺萍,孙全友,李浩.2013.相对湿度和氨气应激对肉仔鸡血氨水平及细胞因子含量的影响[J].动物营养学报,25(10):2246-2253.[WeiFX,Hu XF,Zhang MH,LiSY,Xu B,Lin P,Sun QY,LiH.2013.Effects of relative humidity and ammonia stress on plasma ammonia level and cytokinecontents of broilers[J].ChineseJournal of AnimalNutrition,25(10):2246-2253.]doi:10.3969/j.issn.1006-267x.2013.10.008.

苑妞妞,潘琪浩,胡微唯,张超楠,高腾云,廉红霞,赵丽,孙宇.2023.西藏高原环境舍饲与半舍饲模式对娟姗牛乳品质、瘤胃发酵和血清生化指标的影响[J].动物营养学报,35(5):3093-3103.[Yuan NN,Pan QH,Hu Ww,Zhang CN,Gao TY,Lian HX,Zhao L,Sun Y.2023.Effects of shed feeding and semi-shed feeding patterns on milk quality,rumen fermentation and serum biochemical indices of jersey cattle in Tibet plateau[J].Chinese Jour-nal of Animal Nutrition,35(5):3093-3103.]doi:10.12418/CJAN2023.288.

张星星,黄新,韩猛立,蒋烈戈,张倩,高攀,刘鹏,吴桐忠,钟发刚.2021.放牧与舍饲条件下夏洛莱牛肠道微生物多样性及差异分析[J].新疆农业科学,58(9):1729-1739.[Zhang XX,Huang X,Han ML,Jiang LG,Zhang Q,Gao P,Liu P,Wu TZ,Zhong FG.2021.Differences of the intestinal microbial flora diversity and composition of"barn feeding and grazingCharolais[J].Xinjiang Agricul-tural Sciences,58(9):1729-1739.]doi:10.6048/j.issn.1001-4330.2021.09.020.

赵晓雅,史晨迪,田沛知,陈佳欣,段春辉,纪守坤,严慧,刘月琴,张英杰.2022.牛至精油对羔羊生长性能、养分表观消化率及血清免疫和抗氧化指标的影响[J].动物营养学报,34(4):2534-2541.[Zhao XY,Shi CD,Tian PZ,Chen JX,Duan CH,JiSK,Yan M,Liu YQ,Zhang YJ.2022.Effects of oregano essential oil on growth perfor"mance,nutrient apparent digestibility and serum immune"and antioxidant indexes of lamb[J].Chinese Journal of"Animal Nutrition,34(4):2534-2541.]doi:10.3969/j.issn.1006-267x.2022.04.048.

Arenas J.2022.Editorial:Pathogenic Neisseria:Pathogenicity,vaccines,and antibiotic resistance[J].Frontiers in Cellular and Infection Microbiology,12:1119244.doi:10.3389/fcimb.2022.1119244.

Aziz Q,Doré J,Emmanuel A,Guarmer F,Quigley EMM.2012.Gutmicrobiota and gastrointestinal health:Current concepts and future directions[J].Neurogastroenterologyamp;Motility,25(1):4-15.doi:10.1111/nmo.12046.

Baltazar-Diaz TA,González-Hernández LA,Aldana-Ledesma"J M,Pena-Rodriguez M,Vega-Magana AN,Zepeda-Morales AS M,López-Roa RI,del Toro-Arreola S,Martinez-López E,Salazar-Montes AM,Bueno-Topete M"R.2022.Escherichia/Shigella,SCFAs,and metabolic path-ways—The triad that orchestrates intestinal dysbiosis in patients with decompensated alcoholic cirrhosis from Western Mexico[J].Microorganisms,10(6):1231.doi:10.3390/microorganisms10061231.

Beller A,Kruglov A,Durek P,von Goetze V,Werner K,Heinz GA,Ninnemann J,Lehmann K,Maier R,Hoffmann U,Riedel R,Heiking K,Zimmermann J,Siegmund B,Mashreghi MF,Radbruch A,Chang HD.2020.Specific microbiota enhances intestinal IgA levels by inducing TGF-β in Tfollicular helper cells of Peyer's patches in mice[J].European Journal of Immunology,50(6):783-794.doi:10.1002/eji.201948474.

Chen J,Huang CL,Wang JJ,Zhou H,Lu YY,Lou LH,"Zheng JY,Tian L,Wang XP,Cao ZW,Zeng Y.2017."Dysbiosis of intestinal microbiota and decrease in paneth"cell antimicrobial peptide level during acute necrotizing"pancreatitis in rats[J].PLoS One,12(4):e0176583.doi:10.1371/journal.pone.0176583.

Chen SS,He RN,He BH,Xu L,Zhang S.2021.Potentia roles of exosomal lncRNAs in the intestinal mucosal im-mune barrier[J].Journal of Immunology Research,2021:7183136.doi:10.1155/2021/7183136.

Dabke K,Hendrick G,Devkota S.2019.The gut microbiome and metabolic syndrome[J].The Journal of Clinical Inves-tigation,129(10):4050-4057.doi:10.1172/JCI129194.

Dande SS,Bhatt VD,Patil NV,Joshi CG.2015.The camel faecal metagenome under different systems of manage-ment:Phylogenetic and gene-centric approach[J].Live-stock Science,178:108-118.doi:10.1016/j.livsci.2015.05.024.

Engevik MA,Danhof HA,Ruan W,Engevik AC,Chang-Graham AL,EngevikKA,Shi ZC,ZhaoYL,Brand CK,Krystofiak ES,Venable S,Liu XL,Hirschi KD,Hyser JM,Spinler JK,Britton RA,Versalovic J.2021.Fusobac-terium nucleatum secretes outer membrane vesicles and"promotes intestinal inflammation[J].mBio,12(2):e02706-20.doi:10.1128/mBio.02706-20.

Fidanza M,Panigrahi P,Kollmann TR.2021.Lactiplantiba-cillus plantarum-Nomad and Ideal Probiotic[J].Frontiers in Microbiology,12:712236.doi:10.3389/fmicb.2021.712236.

Fu X,ZhangYP,Shi B,WuXK,Zhao HW,Xin ZB,Yang JS.2022.Benzoic acid metabolism and lipopolysaccharide synthesis of intestinal microbiome affects the health of ruminants under free-range and captive mode[J].Life(Basel),12(7):1071.doi:10.3390/life12071071.

Gharechahi J,Sarikhan S,HanJ L,Ding XZ,Salekdeh GH.2022.Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates[J].NPJ Biofilms and Microbiomes,8(1):46.doi:10.1038/s41522-022-00309-9.

Gharechahi J,Vahidi MF,Ding XZ,Han JL,Salekdeh GH.2020.Temporal changes inmicrobial communitiesattached to forages with different lignocellulosic compositions in cattle rumen[J].FEMS Microbiology Ecology,96(6):fiaa069.doi:10.1093/femsec/fiaa069.

Han XP,Liu HJ,Hu LY,Zhao N,Xu SX,Lin ZJ,Chen Y"W.2021.Bacterial communitycharacteristics in thegastro-intestinal tract of yak(Bos grunniens)fully grazed on pas-ture of the Qinghai-Tibetan Plateau of China[J].Animals"(Basel),11(8):2243.doi:10.3390/anil 1082243.

Huang P,Jiang AQ,Wang XX,Zhou Y,Tang WH,Ren CF Qian X,Zhou ZR,Gong AH.2021.NMNmaintains intes-tinalhomeostasis by regulating the gut microbiota[J].Fron-tiers in Nutrition,8:714604.doi:10.3389/fnut.2021.714604.

Jin ML,Zhu YM,Shao DY,Zhao K,Xu CL,LiQ,Yang H,"Huang QS,Shi JL.2017.Effects of polysaccharide from"mycelia of Ganodermalucidum on intestinal barrier func-tions of rats[J].International Journal of Biological Macro-molecules,94(A):1-9.doi:10.1016/j.ijbiomac.2016.09.099.

John GK,Mullin GE.2016.The gut microbiome and obesity"[J].Current Oncology Reports,18(7):45.doi:10.1007/s11912-016-0528-7.

KurilshikovA,Wijmenga C,Fu JY,Zhernakova A.2017.Host"genetics and gut microbiome:Challenges and perspectives[J].Trends in Immunology,38(9):633-647.doi:10.1016/j.it.2017.06.003.

Kuziel GA,Rakoff-Nahoum S.2022.The gut microbiome[J]Current Biology,32(6):R257-R264.doi:10.1016/j.cub.2022.02.023.

Li MM,Zhou Y,Zuo L,Nie D,Li XA.2021.Dietary fiber regulates intestinal flora and suppresses liver and systemic inflammation to alleviate liver fibrosis in mice[J].Nutri-tion,81:110959.doi:10.1016/j.nut.2020.110959.

Lynch SV,Pedersen 0.2016.The human intestinal microbi- ome in health and disease[J].New England Journal of Me- dicine,375(24):2369-2379.doi:10.1056/NEJMra1600266.Macchione IG,Lopetuso LR,Ianiro G,NapoliM,Gibiino G,Rizzatti G,Petito V,Gasbarrini A,Scaldaferri F.2019.

Akkermansia muciniphila:Key player in metabolic and gastrointestinal disorders[J].European Review for Medi-cal and Pharmacological Sciences,23(18):8075-8083.doi:10.26355/eurrev_201909_19024.

Martinez-Garcia M,Brazel DM,Swan BK,Arnosti C,Chain PS G,Reitenga KG,Xie G,Poulton NJ,Gomez ML,Masland DED,Thompson B,Bellows WK,Ziervogel K,LoCC,Ahmed S,Gleasner CD,DetterCJ,Stepanauskas

R.2012.Capturing single cell genomes of active polysac-charide degraders:An unexpected contributionofVerruco-microbia[J].PLoS One,7(4):e35314.doi:10.1371/jour-nal.pone.0035314.

Palevich N,Kelly WJ,Leahy SC,Denman S,Altermann E,Rakonjac J,Attwood GT.2019.Comparative genomics of rumen Butyivibrio spp.uncovers acontinuum of"polysaccharide-degrading capabilities[J].Applied and En-vironmental Microbiology,86(1):e01993-19.doi:10.1128/AEM.01993-19.

Pan YS,An HR,Fu T,Zhao SY,Zhang CW,Xiao GH Zhang JR,Zhao XF,Hu GZ.2018.Characterization of"Sreptococcus pluranimalium from acattle withmastitisby"whole genome sequencing and functional validation[J]BMC Microbiology,18(1):182.doi:10.1186/s12866-018-1327-0.

Pidcock SE,Skvortsov T,Santos FG,Courtney SJ,Sui-Ting K,Creevey CJ,Huws SA.2021.Phylogenetic systema"tics of Butyrivibrio andPseudobutyrivibrio genomes illus-trate vast taxonomic diversity,open genomes and an abun-dance of carbohydrate-active enzyme family isoforms[J].Microbial Genomes,7(10):000638.doi:10.1099/mgen0.000638.

Sahin O,Yaeger M,WuZW,ZhangQJ.2017.Campylobacter-associated diseases in animals[J].Annual Review of Ani-mal Biosciences,5:21-42.doi:10.1146/annurev-animal-022516-022826.

Shapira M.2016.Gut microbiotas and hostevolution:Scaling up symbiosis[J].Trends in Ecologyamp;Evolution,31(7):539-549.doi:10.1016/j.tree.2016.03.006."SheppardSK,MaidenM CJ.2015.The evolution of Campylo-bacter jejumi and Campylobacter coli[J].Cold Spring Har-bor Perspectives in Biology,7(8):a018119.doi:10.1101/cshperspect.a018119.

Song PF,Qin W,Huang YG,Wang L,Cai ZY,Zhang TZ.2020.Grazing management influences gut microbial diver-sity of livestock in the same area[J].Sustainability,12(10):4160.doi:10.3390/su12104160.

Sun YW,Sun YJ,ShiZH,Liu ZS,Zhao C,Lu TF,Gao H,Zhu F,Chen R,Zhang J,Pan RL,Li BG,Teng LW,Guo ST.2020.Gut microbiota of wild and captive alpine musk deer(Moschus chrysogaster)[J].Frontiers in Microbio-logy,10:3156.doi:10.3389/fmicb.2019.03156.

Tremaroli V,Bäckhed F.2012.Functional interactions between the gut microbiota and host metabolism[J].Nature,489(7415):242-249.doi:10.1038/nature11552.

Veldhoen M,Ferreira C.2015.Influence of nutrient-derived metabolites on lymphocyte immunity[J].Nature Medicine,21(7):709-718.doi:10.1038/nm.3894.

Wang BH,Luo YL,Su RN,Yao D,Hou YR,Liu C,Du R,Jin Y.2020.Impact of feeding regimens on the composi-tion of gut microbiota and metabolite profilesof plasma and feces from Mongolian sheep[J].Journal of Microbio-logy,58(6):472-482.doi:10.1007/s12275-020-9501-0

Wang L,Cao ZM,ZhangLL,LiJM,LvWL.2022.Therole of gut microbiota in some liver diseases:From an immuno-logical perspective[J].Frontiers in Immunology,13:923599.doi:10.3389/fimmu.2022.923599.

Wang YP,FuYH,He YY,KulyarMFA,Iqbal M,LiK,Liu JG.2021.Longitudinal characterization of the gut bacte-rial and fungalcommunities inyaks[J].Journal of Fungi,7(7):559.doi:10.3390/jof7070559.

Wen Y,LiSF,Wang ZS,FengH,YaoXT,Liu MJ,Chang JJ,Ding XY,Zhao HY,Ma WT.2022.Intestinal micro-bial diversity of free-range and captive yak in Qinghai Province[J].Microorganisms,10(4):754.doi:10.3390/microorganisms10040754.

Zafar H,Saier MH.2021.Gut Bacteroides species in health and disease[J].Gut Microbes,13(1):1848158.doi:10.1080/19490976.2020.1848158.

Zhang H,Shao MX,Huang H,Wang SJ,Ma LL,Wang HN,Hu LP,Wei K,Zhu RL.2018.The dynamic distribution of small-tail Han sheep microbiota across different intesti-nal segments[J].Frontiers in Microbiology,9:00032.doi:10.3389/fmicb.2018.00032

Zhao L,Zhang Q,Ma WN,Tian F,Shen HY,Zhou MM.2017.A combination of quercein and resveratrol reduces obesity in high-fat diet-fed rats by modulation of gut microbiota[J].Food and Function,8(12):4644-4656.doi:10.1039/c7fo01383c.

Zhu YB,Li X,Lousang·Zhaxi,Suolang·Zhaxi,Suolang,Ciyang,Sun GM,Cidan·Yangji,Basang·Wangdui.2022.House feeding pattern increased male yak fertility by improving gut microbiota and serummetabolites[J].Fron-tiers in Veterinary Science,9:989908.doi:10.3389/fvets.2022.989908.

(责任编辑 兰宗宝)

猜你喜欢
肠道菌群
补充双歧杆菌与鼠李糖乳杆菌三联活菌制剂对肠道手术后肠道菌群的影响
UPLC—ESI—Q—TOF—MS/MS分析槲皮苷在大鼠
诱导小鼠肠道菌群改变对血脂影响的初步探究
青春岁月(2017年4期)2017-03-14 17:21:34
高铅血症儿童肠道菌群构成变化研究
气相色谱法快速分析人唾液中7种短链脂肪酸
分析化学(2016年7期)2016-12-08 00:09:44
大鼠肠道菌群对芍药苷体外代谢转化的研究
肠道菌群与非酒精性脂肪性肝病
上海医药(2016年19期)2016-11-09 22:33:10
英夫利西单抗对炎症性肠病患者肠道菌群的影响
动脉粥样硬化的肠道微生态机制研究
口服头孢菌素类药物对肺炎链球菌肺炎大鼠肠道菌群的影响