李紫微 张津铭 于牧鑫 刘潇钰 沈海燕 季霞
[摘要] 幽门螺杆菌(Helicobacter pylori,HP)定植于胃上皮黏膜后,可经非萎缩性胃炎、慢性萎缩性胃炎、肠上皮化生和异型增生最终发展为胃癌,而巨噬细胞在此过程中发挥重要作用。HP中的多种毒性物质可通过巨噬细胞表面受体、改变胃内微环境、激活其他免疫细胞等多种途径使巨噬细胞发生极化失衡,导致慢性炎症和免疫抑制,从而促进胃癌的发生。巨噬细胞在胃炎和胃癌中的作用使其成为个体化治疗的新靶点。本文对巨噬细胞极化失衡在HP相关胃炎及胃癌中作用的研究进展予以综述。
[关键词] 巨噬细胞;极化;幽门螺杆菌;胃炎;胃癌
[中图分类号] R735.2;R573.3 [文献标识码] A [DOI] 10.3969/j.issn.1673-9701.2024.16.030
胃癌的发病率和死亡率均较高,居全球癌症致死原因的第3位,占癌症致死总数的7.7%[1]。慢性炎症、免疫抑制与肿瘤的发生密切相关。幽门螺杆菌(Helicobacter pylori,HP)定植于胃黏膜上皮后,产生细胞毒素相关基因A(cytotoxin-associated gene A,CagA)和空泡毒素A(vacuolating cytotoxin A,VacA)等物质,激活胃黏膜固有免疫,导致胃黏膜慢性炎症[2]。巨噬细胞是固有免疫反应的参与者,在肿瘤相关炎症中发挥主导作用,巨噬细胞发挥作用的关键步骤之一是极化[3]。巨噬细胞极化是在变化的微环境中改变其表型,向M1型或M2型转化,并发挥不同作用。M1型巨噬细胞具有抗肿瘤和杀灭微生物的功能,可引起组织损伤,抑制组织再生;M2型巨噬细胞可修复组织损伤;M1型和M2型巨噬细胞的动态平衡可确保机体的免疫功能适当,并避免组织损伤[4]。
HP诱导的巨噬细胞极化失衡在胃炎和胃癌中起重要作用。M1型巨噬细胞合成并分泌促炎细胞因子,产生炎症反应,在非萎缩性胃炎(non-atrophic gastritis,NAG)和慢性萎缩性胃炎(chronic atrophic gastritis,CAG)阶段发挥主要作用[5];而M2型巨噬细胞通过合成并分泌免疫相关细胞因子促进肿瘤进展,在肠上皮化生(intestinal metaplasia,IM)、异型增生(dysplasia,Dys)和胃癌阶段发挥作用[6-7]。HP诱导巨噬细胞极化失衡在胃炎至胃癌动态变化中的作用机制仍未得到充分阐述。本文对HP诱导巨噬细胞极化的机制及两种类型巨噬细胞在胃炎和胃癌进展中的作用进行综述,旨在为胃炎和胃癌的临床治疗提供新思路。
1 HP诱导巨噬细胞极化失衡
1.1 HP诱导巨噬细胞向M1型极化
HP是Ⅰ类致癌因子,可诱导巨噬细胞极化失衡,在慢性胃炎向胃癌的发展过程中发挥重要作用。在HP感染胃黏膜早期,机体固有免疫系统被激活,趋化因子配体2、巨噬细胞集落刺激因子(macrophage colony stimulating factor,MCSF)等趋化因子将巨噬细胞聚集至感染部位并产生多种效应杀灭HP。但HP产生的多种毒性物质可作用于巨噬细胞并改变其作用机制,导致感染持续,形成慢性炎症,经NAG、CAG、IM和Dys,最终发展为胃癌。巨噬细胞与病原体在局部微环境中分泌的毒性物质结合,产生促炎信号并通过级联反应使巨噬细胞向M1型分化;同时,巨噬细胞也可在MCSF、γ干扰素(interferon-γ,IFN-γ)等细胞因子刺激下向M1型分化。M1型巨噬细胞的生物标志物有CD68、CD86和主要组织相容性复合体Ⅱ类共刺激分子[8]。概括而言,HP可通过以下途径诱导巨噬细胞发生M1型极化。
巨噬细胞表面受体与HP产生的毒性物质结合,通过多条信号通路使巨噬细胞向M1型极化。多项研究表明幽门螺杆菌中性粒细胞激活蛋白(Helicobacter pylori neutrophil-activating protein,HP-NAP)、CagA、VacA可与Toll样受体(toll-like receptor,TLR)结合,激活核因子κB(nuclear factor-κB,NF-κB)、信号转导及转录活化因子(signal transducer and activator of transcription,STAT)1和STAT6信号通路[9-12];脂多糖与TLR4结合,激活炎症小体NLRP3/胱天蛋白酶(cysteinyl aspartate specific proteinase,caspase)-1信号通路[13-14];HP感染可降低微RNA(microRNA,miR)-4270的表达,激活免疫受体CD300E,诱导巨噬细胞向M1型极化[15]。研究证实肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)还可通过激活表皮生长因子受体(epidermal growth factor receptor,EGFR)信号通路促进M1型巨噬细胞极化[16]。
另外,HP感染可导致炎症因子增多,促进氧化反应,导致活性氧(reactive oxygen,ROS)水平升高,改变胃内微环境,从而使M1型巨噬细胞占比升高。CagA由Ⅳ型分泌系统转运至胃黏膜上皮细胞,提高微环境中白细胞介素(interleukin,IL)-6、IL-8和IL-18的水平,介导巨噬细胞向M1型极化[17]。HP的持续感染可造成炎症小体的慢性活化,经多条信号通路发生M1型巨噬细胞极化,从而引发胃黏膜萎缩,如重组TNF-α诱导蛋白(TNF-α-inducing protein,Tipα)可激活NF-κB/NLRP3/caspase-1信号通路[18];缺氧诱导因子-α、ROS可激活NLRP3/蛋白激酶B(protein kinase B,PKB,又称Akt)/哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信号通路[8]。TLR4亦可通过激活NLRP3介导巨噬细胞的M1型极化,但具体机制有待探究。HP感染可激活胃黏膜细胞的氧化反应,使胃内微环境中ROS增多,通过Akt/mTOR途径促进巨噬细胞的M1型极化[19]。HP还可通过酶类物质改变局部微环境,如HP相关性胃炎中乙酰肝素酶的活化可通过p38丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和NF-κB信号通路介导巨噬细胞向M1型极化[20-21]。HP通过分解尿素、中和胃酸促进胃泌素的释放,胃泌素可通过激活Hedgehog信号通路将巨噬细胞招募到感染部位并于此微环境中成熟极化[22]。HP可通过诱导其他免疫细胞的活化促进巨噬细胞向M1型极化。HP感染还可增加微环境中巨噬细胞移动抑制因子(macrophage migration inhibitory factor,MIF)的表达,MIF促进T细胞增殖进而分泌TNF-α等细胞因子介导巨噬细胞向M1型极化[23];HP-NAP通过促进辅助性T细胞1的免疫反应促进IL-6、IL-8和TNF-α表达,形成巨噬细胞向M1型极化的微环境[12]。
1.2 HP诱导巨噬细胞向M2型极化
炎症的持续进展可加重胃黏膜损伤,使胃内微环境发生改变而不适合HP定植。在这种情况下,HP与胃内微环境共同作用促使巨噬细胞向M2型极化。M2型巨噬细胞可在辅助性T细胞2型细胞因子(IL-4、IL-5)的刺激下诱导分化。M2型巨噬细胞的生物标志物有CD206、CD163共刺激分子及CD200R膜糖蛋白等。
HP及其毒性产物可与多种受体结合使巨噬细胞向M2型极化。CagA可与巨噬细胞表面的EGFR结合,激活NF-κB信号通路[24];尿素酶B(urease B,UreB)可与TLR2结合使巨噬细胞由M1型向M2型转化[25];脂多糖与TLR4结合可激活NF-κB和STAT3信号通路,并调节B细胞淋巴瘤2(B-cell lymphoma 2,Bcl-2)的转录和表达,介导巨噬细胞发生M2型极化[26];Tipα是HP特有的致癌因子,其可与胃黏膜上皮细胞表达的核仁素受体结合,并通过IL-6/ STAT3信号通路介导巨噬细胞发生M2型极化[27]。综上,相同巨噬细胞受体与不同的HP毒性产物结合时可向不同方向极化。巨噬细胞的主要表型在胃炎至胃癌进展过程中发生改变,HP在不同感染阶段释放的毒性产物是否也发生变化仍需进一步研究。
胃内微环境的变化也可促进M2型巨噬细胞极化。前列腺素E2(prostaglandin E2,PGE2)的表达水平与M2型巨噬细胞水平呈正相关,并使M2型巨噬细胞高表达趋化因子配体2,进一步诱导其他免疫细胞的聚集。HP-NAP使葡萄糖转运体的生成增加,通过多种酶的作用促进微环境中乳酸和还原型烟酰胺腺嘌呤二核苷酸磷酸的产生,使巨噬细胞向M2型极化[28]。HP感染通过增强巨噬细胞内蛋氨酸循环的活性上调蛋氨酸腺苷转移酶的表达水平,使巨噬细胞中组蛋白发生甲基化并增加受体相互作用蛋白的表达,从而介导巨噬细胞向M2型极化[29]。
2 巨噬细胞极化失衡在胃炎和胃癌中的作用
在胃炎至胃癌的进展过程中,M1与M2型巨噬细胞的水平是动态变化的。在NAG和CAG阶段,巨噬细胞向M1型极化,通过合成并分泌趋化因子和促炎因子导致炎症慢性化;在炎症和IM阶段,巨噬细胞由M1型向M2型转化,此时M1型与M2型巨噬细胞同时存在于胃内微环境中;在Dys和胃癌阶段,M2型巨噬细胞占据优势,通过合成并分泌免疫抑制相关因子,促进肿瘤细胞的产生。
2.1 M1型巨噬细胞与NAG和萎缩性胃炎
M1型巨噬细胞可通过吞噬作用清除病原体,介导炎症反应,保护宿主。巨噬细胞的过度聚集和炎症反应可对宿主造成不良影响,如伤口不愈合、组织无法再生等。胃黏膜感染初期形成急性胃炎,后进展为慢性胃炎。在此过程中,M1型巨噬细胞极化显著增强,其产生并分泌大量炎症性趋化因子和促炎细胞因子。
IL-1β与ROS对胃黏膜上皮细胞有损伤作用。M1型巨噬细胞可通过分泌NLRP3活化caspase-1,促进IL-1β和ROS的分泌,造成细胞凋亡,加速胃黏膜萎缩[30]。IL-1β作为胃酸分泌的抑制剂,可引起胃黏膜萎缩,为IM和胃癌的发展提供条件。Shigematsu等[31]研究发现,过表达IL-1β的转基因小鼠中,CAG至胃癌的发展速度更快。IL-1β可通过多条信号通路导致胃黏膜上皮细胞DNA发生甲基化,从而导致胃癌。IL-1β还可通过激活NF-κB信号通路,释放大量一氧化氮,从而造成DNA损伤[32]。IL-1β和TNF-α通过NF-κB途径依赖方式促进胃黏膜上皮细胞重组人E26转录因子1的表达,导致慢性炎症的发生[33]。ROS对胃黏膜上皮细胞有致癌作用[34]。
此外,M1型巨噬细胞分泌的TNF-α、外泌体miRNA等在炎症过程中发挥重要作用,且与早期胃癌的发生密切相关。如IL-8、IL-18和TNF-α等可激活细胞外信号调节激酶(extracellular signal-regulated kinase,ERK)1/2造成胃黏膜上皮细胞损伤[35];IL-22可诱导产生与IFN-γ有关的T细胞反应,从而加剧胃部炎症[36]。M1型巨噬细胞通过分泌miR-155促进多种免疫细胞产生TNF-α、IL-23、IL-6,作用于胃黏膜上皮细胞导致胃黏膜萎缩[37]。
2.2 M2型巨噬细胞与IM、Dys和胃癌
在慢性胃炎早期,M1型巨噬细胞发挥主要作用,通过释放炎症细胞因子促进炎症反应,适量的炎症细胞因子对宿主是有利的,但随着M1型巨噬细胞的不断增多,炎症因子过度释放会损害胃黏膜。此后,胃内微环境中M2型巨噬细胞的比例增加,通过释放抗炎因子修复过量的炎症因子所致损伤。巨噬细胞的极化平衡可修复损伤,若极化失衡则导致疾病朝着胃癌方向进展。在Dys、胃癌进展过程中,M1型巨噬细胞的比例逐渐减少,胃内炎症反应减弱,而M2型巨噬细胞的过度形成使胃黏膜上皮细胞损伤加重,从而导致胃癌的发生。
M2型巨噬细胞释放的细胞因子可通过多条信号通路促进胃癌的发生。Tipα可激活Wnt/β-连环蛋白信号通路,导致癌基因的异常表达[17]。IL-6可激活STAT3信号通路,促进细胞分裂,导致胃癌细胞的增殖和迁移[38]。转化生长因子-β(Transforming growth factor-β,TGF-β)可诱导神经元再生相关蛋白的表达,促进上皮间质转化[39]。缺氧环境中产生的血管内皮生长因子、血小板衍生生长因子、纤维母细胞生长因子等可通过MAPK和ERK等信号通路促进胃癌的发生。此外,肿瘤细胞通过分泌人白细胞抗原复合体18、长链非编码RNA介导巨噬细胞发生M2型极化,进一步加快胃癌进展[40]。
2.3 M2型巨噬细胞与进展期胃癌
已有研究证明,胃癌微环境中M2型巨噬细胞的富集与胃癌的预后呈负相关,主要原因是M2型巨噬细胞表达的IL-10、TGF-β、表皮生长因子等可促进肿瘤细胞的增殖和存活,并促进血管生成;M2型巨噬细胞的浸润程度与胃癌细胞的增殖和转移密切相关。
M2型巨噬细胞分泌的IL-10和TGF-β可通过NF-κB和STAT3信号通路调节相关基因的转录和表达,如与细胞增殖和凋亡相关的Bcl-2[41]。基质金属蛋白酶(matrix metalloproteinase,MMP)在细胞生长发育、疾病的病理破坏中发挥作用。M2型巨噬细胞表达壳多糖酶3样蛋白1,通过IL-13Rα2的激活及ERK1/2和c-Jun氨基末端激酶的磷酸化促进MMP的表达,有利于胃癌细胞的转移[42]。此外,血管内皮生长因子、IL-10、双调蛋白和MMP-1可直接或间接消耗CD8+T细胞,促进肿瘤细胞的侵袭和增殖[43]。miR-487a可下调胃癌细胞中T细胞内抗原-1的表达,促进胃癌细胞的扩散和转移[44]。
3 免疫治疗和靶向治疗
胃癌患者从化疗和靶向治疗中受益较少,其主要原因是肿瘤的转移、复发和耐药性等。
M1型巨噬细胞的复极化可用于胃癌的治疗。在标准的一线化疗中,氟嘧啶和铂类药物通过Wnt信号通路阻断巨噬细胞中程序性死亡蛋白1的表达,从而实现M1型巨噬细胞的复极化[45]。重楼皂苷Ⅱ和雷西莫特也可通过M1型巨噬细胞的复极化用于胃癌的局部免疫治疗,但具体机制不明[46]。抑制M2型巨噬细胞可能是靶向治疗胃癌的另一条途径。高表达趋化因子配体12可促进M2型巨噬细胞的迁移,曲尼司特可通过抑制肿瘤相关成纤维细胞释放趋化因子配体12,从而抑制M2型巨噬细胞的迁移活性[47]。此外,M2型巨噬细胞的极化和聚集与集落刺激因子-1有关,emactuzumab可通过结合集落刺激因子-1R抑制M2型巨噬细胞极化,用于胃癌的临床治疗[48]。
M2巨噬细胞与胃癌耐药性密切相关。赖氨酰氧化酶与细胞外基质重塑的胺氧化酶合成有关,并参与肿瘤细胞的增殖、迁移、侵袭和转移。赖氨酰氧化酶过度表达可激活Wnt和NF-κB信号通路,促进M2型巨噬细胞极化,使胃癌细胞的免疫逃逸和耐药性增强,导致胃癌预后不佳[49]。CRNDE是一种RNA基因,参与细胞的增殖﹑迁移和侵袭,M2型巨噬细胞高表达CRNDE,通过张力蛋白同源物和磷酸酶泛素化,使胃癌对顺铂产生耐药性[50]。M2型巨噬细胞分泌的miR-223与奥沙利铂的耐药相关,但具体机制尚不明确[51]。因此,阻断以上途径可降低胃癌的耐药性。萎缩性胃炎、IM属于癌前状态,Dys属于癌前病变,若在癌前病变阶段进行干预,可有效降低胃癌的发病率。
在HP感染相关癌前状态及癌前病变的治疗中,根除HP可逆转癌前病变。但部分研究认为,HP根除对Correa进程的阻断存在“不可逆点”,即HP根除仅对某阶段病变有逆转效应,超过该阶段则失去逆转效应。巨噬细胞在Correa进程中具有重要作用,作用于巨噬细胞可治疗癌前状态和癌前病变。
4 小结
本文对HP诱导巨噬细胞向不同方向极化的机制进行系统阐述,并讨论不同极化类型巨噬细胞在NAG至胃癌发展中的重要作用。巨噬细胞极化失衡在胃癌发生发展中的重要作用使其成为HP感染相关癌前状态、癌前病变及胃癌治疗的新靶点。然而,巨噬细胞极化在NAG至胃癌发展中的具体机制并未得到充分研究和证实,且多种药物干预手段尚有待进一步评估。因此,阐明HP诱导的巨噬细胞极化失衡,并干预其过程有可能降低胃癌的发病率,这需今后进一步探索。
利益冲突:所有作者均声明不存在利益冲突。
[参考文献]
[1] AJANI J A, DAMICO T A, BENTREM D J, et al. Gastric cancer, version 2.2022, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2022, 20(2): 167–192.
[2] SALVATORI S, MARAFINI I, LAUDISI F, et al. Helicobacter pylori and gastric cancer: Pathogenetic mechanisms[J]. Int J Mol Sci, 2023, 24(3): 2895.
[3] WANG L X, ZHANG S X, WU H J, et al. M2b macrophage polarization and its roles in diseases[J]. J Leukoc Biol, 2019, 106(2):345–358.
[4] LI W, ZHANG X, WU F, et al. Gastric cancer-derived mesenchymal stromal cells trigger M2 macrophage polarization that promotes metastasis and EMT in gastric cancer[J]. Cell Death Dis, 2019, 10(12): 918.
[5] BECEIRO S, RADIN J N, CHATUVEDI R, et al. TRPM2 ion channels regulate macrophage polarization and gastric inflammation during Helicobacter pylori infection[J]. Mucosal Immunol, 2017, 10(2): 493–507.
[6] PEEK R M, FISKE C, WILSON K T. Role of innate immunity in Helicobacter pylori-induced gastric malignancy[J]. Physiol Rev, 2010, 90(3): 831–858.
[7] KRAKOWIAK M S, NOTO J M, PIAZUELO M B, et al. Matrix metalloproteinase 7 restrains Helicobacter pylori- induced gastric inflammation and premalignant lesions in the stomach by altering macrophage polarization[J]. Oncogene, 2015, 34(14): 1865–1871.
[8] LU Y, RONG J, LAI Y, et al. The degree of Helicobacter pylori infection affects the state of macrophage polarization through crosstalk between ROS and HIF-1α[J]. Oxid Med Cell Longev, 2020, 2020: 5281795.
[9] IMAI S, OOKI T, MURATA-KAMIYA N, et al. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis[J]. Cell Host Microbe, 2021, 29(6): 941–958.
[10] YUAN J, LI P, TAO J, et al. H. pylori escape host immunoreaction through inhibiting ILK expression by VacA[J]. Cell Mol Immunol, 2009, 6(3): 191–197.
[11] OERTLI M, NOBEN M, ENGLER D B, et al. Helicobacter pylori γ-glutamyl transpeptidase and vacuolating cytotoxin promote gastric persistence and immune tolerance[J]. Proc Natl Acad Sci USA, 2013, 110(8): 3047–3052.
[12] TSAI C C, KUO T Y, HONG Z W, et al. Helicobacter pylori neutrophil-activating protein induces release of histamine and interleukin-6 through G protein-mediated MAPKs and PI3K/Akt pathways in HMC-1 cells[J]. Virulence, 2015, 6(8): 755–765.
[13] JANG A R, KANG M J, SHIN J I, et al. Unveiling the crucial role of type Ⅳ secretion system and motility of Helicobacter pylori in IL-1β production via NLRP3 inflammasome activation in neutrophils[J]. Front Immunol, 2020, 11: 1121.
[14] PACHATHUNDIKANDI S K, BLASER N, BRUNS H, et al. Helicobacter pylori avoids the critical activation of NLRP3 inflammasome-mediated production of oncogenic mature IL-1β in human immune cells[J]. Cancers (Basel), 2020, 12(4): 803.
[15] PAGLIARI M, MUNARI F, TOFFOLETTO M, et al. Helicobacter pylori affects the antigen presentation activity of macrophages modulating the expression of the immune receptor CD300E through miR-4270[J]. Front Immunol, 2017, 8: 1288.
[16] HARDBOWER D M, SINGH K, ASIM M, et al. EGFR regulates macrophage activation and function in bacterial infection[J]. J Clin Invest, 2016, 126(9): 3296–3312.
[17] SKOOG E C, MARTIN M E, BARROZO R M, et al. Maintenance of type Ⅳ secretion function during Helicobacter pylori infection in mice[J]. mBio, 2020, 11(6): e03147–20.
[18] WATANABE T, TAKAHASHI A, SUZUKI K, et al. Epithelial-mesenchymal transition in human gastric cancer cell lines induced by TNF-α-inducing protein of Helicobacter pylori[J]. Int J Cancer, 2014, 134(10): 2373–2382.
[19] LIN T Y, LAN W H, CHIU Y F, et al. Statins' regulation of the virulence factors of Helicobacter pylori and the production of ROS may inhibit the development of gastric cancer[J]. Antioxidants (Basel), 2021, 10(8): 1293.
[20] TANG L, TANG B, LEI Y, et al. Helicobacter pylori- induced heparanase promotes H. pylori colonization and gastritis[J]. Front Immunol, 2021, 12: 675747.
[21] GOBERT A P, FINLEY J L, LATOUR Y L, et al. Hypusination orchestrates the antimicrobial response of macrophages[J]. Cell Rep, 2020, 33(11): 108510.
[22] CHAKRABARTI J, DUA-AWEREH M, SCHUMACHER M, et al. Sonic Hedgehog acts as a macrophage chemoattractant during regeneration of the gastric epithelium[J]. NPJ Regen Med, 2022, 7(1): 3.
[23] YOON K, KIM N, PARK Y, et al. Correlation between macrophage migration inhibitory factor and autophagy in Helicobacter pylori-associated gastric carcinogenesis[J]. PLoS One, 2019, 14(2): e0211736.
[24] HARDBOWER D M, COBURN L A, ASIM M, et al. EGFR-mediated macrophage activation promotes colitis- associated tumorigenesis[J]. Oncogene, 2017, 36(27): 3807–3819.
[25] LIAN D W, XU Y F, DENG Q H, et al. Effect of patchouli alcohol on macrophage mediated Helicobacter pylori digestion based on intracellular urease inhibition[J]. Phytomedicine, 2019, 65: 153097.
[26] ITO N, TSUJIMOTO H, UENO H, et al. Helicobacter pylori-mediated immunity and signaling transduction in gastric cancer[J]. J Clin Med, 2020, 9(11): 3699.
[27] SUGANUMA M, WATANABE T, SUEOKA E, et al. Role of TNF-α-inducing protein secreted by Helicobacter pylori as a tumor promoter in gastric cancer and emerging preventive strategies[J]. Toxins (Basel), 2021, 13(3): 181.
[28] FU H W. Helicobacter pylori neutrophil-activating protein: From molecular pathogenesis to clinical applications[J]. World J Gastroenterol, 2014, 20(18): 5294–5301.
[29] ZHANG Y, YANG H, ZHAO J, et al. Activation of MAT2A-RIP1 signaling axis reprograms monocytes in gastric cancer[J]. J Immunother Cancer, 2021, 9(10): e001364.
[30] KIM W, KIM S J. Heat shock factor 1 as a prognostic and diagnostic biomarker of gastric cancer[J]. Biomedicines, 2021, 9(6): 586.
[31] SHIGEMATSU Y, NIWA T, REHNBERG E, et al. Interleukin-1β induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis[J]. Cancer Lett, 2013, 340(1): 141–147.
[32] TAKESHIMA H, NIWA T, YAMASHITA S, et al. TET repression and increased DNMT activity synergistically induce aberrant DNA methylation[J]. J Clin Invest, 2020, 130(10): 5370–5379.
[33] TENG Y, CANG B, MAO F, et al. Expression of ETS1 in gastric epithelial cells positively regulate inflammatory response in Helicobacter pylori-associated gastritis[J]. Cell Death Dis, 2020, 11(7): 498.
[34] SONG H, YANG B, LI Y, et al. Focus on the mechanisms and functions of pyroptosis, inflammasomes, and inflammatory caspases in infectious diseases[J]. Oxid Med Cell Longev, 2022, 2022: 2501279.
[35] ZHANG J, HOU L, LIANG R, et al. Correction to: CircDLST promotes the tumorigenesis and metastasis of gastric cancer by sponging miR-502-5p and activating the NRAS/MEK1/ERK1/2 signaling[J]. Mol Cancer, 2020, 19(1): 125.
[36] KONG H, YOU N, CHEN H, et al. Helicobacter pylori- induced adrenomedullin modulates IFN-γ-producing T-cell responses and contributes to gastritis[J]. Cell Death Dis, 2020, 11(3): 189.
[37] WANG J, DENG Z, WANG Z, et al. MicroRNA-155 in exosomes secreted from Helicobacter pylori infection macrophages immunomodulates inflammatory response[J]. Am J Transl Res, 2016, 8(9): 3700–3709.
[38] MING S, YIN H, LI X, et al. GITR promotes the polarization of tfh-like cells in Helicobacter pylori- positive gastritis[J]. Front Immunol, 2021, 12: 736269.
[39] LIU Y J, ZENG S H, HU Y D, et al. Overexpression of NREP promotes migration and invasion in gastric cancer through facilitating epithelial-mesenchymal transition[J]. Front Cell Dev Biol, 2021, 9: 746194.
[40] XIN L, WU Y, LIU C, et al. Exosome-mediated transfer of lncRNA HCG18 promotes M2 macrophage polarization in gastric cancer[J]. Mol Immunol, 2021, 140: 196–205.
[41] DAWSON R E, DESWAERTE V, WEST A C, et al. STAT3-mediated upregulation of the AIM2 DNA sensor links innate immunity with cell migration to promote epithelial tumourigenesis[J]. Gut, 2022, 71(8): 1515–1531.
[42] CHEN Y, ZHANG S, WANG Q, et al. Tumor-recruited M2 macrophages promote gastric and breast cancer metastasis via M2 macrophage-secreted CHI3L1 protein[J]. J Hematol Oncol, 2017, 10(1): 36.
[43] LIU Q, YANG C, WANG S, et al. Wnt5a-induced M2 polarization of tumor-associated macrophages via IL-10 promotes colorectal cancer progression[J]. Cell Commun Signal, 2020, 18(1): 51.
[44] YANG X, CAI S, SHU Y, et al. Exosomal miR-487a derived from M2 macrophage promotes the progression of gastric cancer[J]. Cell Cycle, 2021, 20(4): 434–444.
[45] KIM R, AN M, LEE H, et al. Early tumor-immune microenvironmental remodeling and response to first-line fluoropyrimidine and platinum chemotherapy in advanced gastric cancer[J]. Cancer Discov, 2022, 12(4): 984–1001.
[46] YANG Y, YANG Y, CHEN M, et al. Injectable shear-thinning polylysine hydrogels for localized immunotherapy of gastric cancer through repolarization of tumor-associated macrophages[J]. Biomater Sci, 2021, 9(19): 6597–6608.
[47] NAKAMURA Y, KINOSHITA J, YAMAGUCHI T, et al. Crosstalk between cancer-associated fibroblasts and immune cells in peritoneal metastasis: Inhibition in the migration of M2 macrophages and mast cells by Tranilast[J]. Gastric Cancer, 2022, 25(3): 515–536.
[48] GOMEZ-ROCA C A, ITALIANO A, LE TOURNEAU C, et al. Phase Ⅰ study of emactuzumab single agent or in combination with paclitaxel in patients with advanced/ metastatic solid tumors reveals depletion of immunosuppressive M2-like macrophages[J]. Ann Oncol, 2019, 30(8): 1381–1392.
[49] NAI A, ZENG H, WU Q, et al. LncRNA/miR-29c- mediated high expression of lox can influence the immune status and chemosensitivity and can forecast the poor prognosis of gastric cancer[J]. Front Cell Dev Biol, 2021, 9: 760470.
[50] XIN L, ZHOU L Q, LIU C, et al. Transfer of lncRNA CRNDE in TAM-derived exosomes is linked with cisplatin resistance in gastric cancer[J]. EMBO Rep, 2021, 22(12): e52124.
[51] JIN X, QIU X, HUANG Y, et al. MiR-223-3p carried by cancer-associated fibroblast microvesicles targets SORBS1 to modulate the progression of gastric cancer[J]. Cancer Cell Int, 2022, 22(1): 96.
(收稿日期:2023–12–13)
(修回日期:2024–05–18)