旷雨阳 王太荣 李兴华
摘 要 通过寻求积分因子求解常微分方程解题过程中渗透的课程思政教学,说明事物的发展不见得都是那么完美,要经过一番努力使之变得完美,正如幸福是奋斗出来的。在寻求积分因子求解常微分方程过程贯穿思政思想,说明科研道路是艰难的,要学会迎难而上,刻苦钻研,锲而不舍,努力奋斗。
关键词 积分因子;常微分方程;思政教学
中图分类号:G641 文献标识码:B
文章编号:1671-489X(2023)04-0108-04
Research on Ideological and Political Tea-
ching in Process of Seeking Integral Factors
to Solve Differential Equations//KUANG Yuyang,
Wang Tairong, LI Xinghua
Abstract The process of solving ordinary differential
equations by seeking integral factors permeates the ideological and political teaching of the course, it
shows that the development of things is not necessa-rily so perfect. We should make some efforts to make
them perfect, just as happiness is fought out. In this
paper, the ideological and political thought runs through the process of seeking integral factors to solve ordinary differential equations, which shows
that the road to scientific research is difficult, and we should learn to face difficulties, study hard,
persevere and strive hard.
Key words integral factor; ordinary differential equation; ideological and political teaching
Authors address College of Mathematical and Physi-
cal Sciences, Anshun University, Anshun, Guizhou, China, 561000
0 引言
思政教学对未来卓越工程师的价值引领、能力培养和知识传授具有重要作用,而教师教学评价是理工科课程思政教学体系中构成闭环的关键环节,也是当前理工科课程思政理论研究和实践探索的薄弱环节[1]。常微分方程中融入课程思政是提高文化自信、强化德育目标、育人发展的根本要求,是全程育人、全方位育人的需要。常微分方程教学中要结合学科特点,巧妙融入思政元素,在知识传授的同时完成价值引领,真正做到立德树人,达到“润物无声”的育人效果[2]。
恰当微分方程可以通过积分求出它的通解。因此能否将一个非恰当微分方程化为恰当微分方程具有重要意义。积分因子就是为了解决这个问题而引进的概念。运用积分因子解题需要一定的技巧,寻求积分因子无一般方法[3-4],并常遇到很大的困难,但积分因子求解常微分方程在实际问题中应用很广,人们对其进行过激烈的研究和讨论[5-11]。
在讲解寻求积分因子求解微分方程中渗透思政教学内容,说明事物发展并不是一帆风顺的,需要多次尝试失败后,方可找出正确的解决方法。正所谓“山重水复疑无路,柳暗花明又一村”的情景,在解题中体现得淋漓尽致。
3 结论
综合以上思政教学过程,可得出以下结论:
1)一个难题的解决常常需要创造新的方法,这会推动数学的发展,甚至方法的创新比解决难题本身更重要;
2)数学具有统一性,表面上看来不同的对象,有时蕴含着深刻的联系,因此,学科之间的交叉是重要且值得重视的;
3)在独立深入钻研基础上进行学术交流是至关重要的,这往往是创新思想的產生或解决难点的催产素,为此,创造良好的交流环境同样十分重要。
4 参考文献
[1] 孙跃东,曹海艳,袁馨怡.理工科课程思政教学评价指
标体系构建研究[J].江苏大学学报(社会科学版),
2021,23(6):77-88,112.
[2] 汤宇.高等数学课程思政教学的思考[J].吉林工商学院
学报,2021,37(5):119-120.
[3] 旷雨阳.常微分方程:教程与解题策略[M].北京:经济
管理出版社,2017.
[4] 王高雄,周之铭,等.常微分方程[M].3版.北京:高
等教育出版社,2006.
[5] 杨丽霞,张毅.时间尺度上Birkhoff系统的积分因子和
守恒量[J].云南大学学报(自然科学版),2020,42(2):
273-280.
[6] 楊丽霞,张毅.分数阶Birkhoff系统的积分因子与守恒
量[J].华中师范大学学报(自然科学版),2020,54(1):
30-35.
[7] Hu Yanxia. On the first integrals of n-th order
autonomous systems[J].Journal of Mathematical
Analysis and Applications,2017,11(16).
[8] Asgari Z, Hosseini S M. Convergence of a method
based on the exponential integrator and Fourier
spectral discretization for stiff stochastic PDEs
[J].Mathematical Methods in the Applied Sciences,
2018,41(17):8294-8314.
[9] Tisdell C C. Alternate solution to generalized
Bernoulli equations via an integrating factor: an
exact differential equation approach[J].International
Journal of Mathematical Education in Science and
Technology,2016,48(6):913-918.
[10] Penenko V V, Tsvetova E A, Penenko A V. Variational
approach and Eulers integrating factors for
environmental studies[J].Computers and Mathematics
with Applications,2014,67(12):2240-2256.
[11] Mark McCartney. Extending the rubber rope: con-
vergent series, divergent series and the inte-
grating factor[J].International Journal of Mathe-
matical Education in Science and Technology,2013,
44(4):554-559.