吕天星 沈淑荣 姜孝军 闫忠业 刘志
摘 要:【目的】探究不同矮化自根砧對辽艳苹果树生长、产量和果实品质的影响,为其在辽宁寒地适宜矮化砧木的筛选提供参考依据。【方法】以B9、GM256、M9-T337和辽砧2号4种自根砧嫁接辽艳苹果为试材,比较不同砧穗组合树体长势、果实产量和品质的差异。【结果】辽艳/GM256、辽艳/M9-T337、辽艳/辽砧2号3个砧穗组合的树体存活率差异不显著,但均显著高于辽艳/B9;辽艳/B9的树高度、冠径较其他砧穗组合明显减小,矮化性最强,树势偏弱,而其他砧穗组合各有不同,但总体差异不显著,矮化性相近;辽艳/B9的“大脚”现象最严重;不同砧穗组合的树体主枝长度、数量和总枝量均呈增加趋势,辽艳/GM256的树体主枝长度、数量、总枝量显著高于其他砧穗组合。辽艳/M9-T337的长枝比例、中枝比例最高,辽艳/B9的短枝比例最高;中枝+短枝的比例大小为辽艳/B9>辽艳/GM256>辽艳/辽砧2号>辽艳/M9-T337。辽艳/GM256的早期丰产性明显好于其他砧穗组合,辽艳/B9的早期丰产性最差。辽艳/GM256、辽艳/M9-T337和辽艳/辽砧2号的优质果率明显高于辽艳/B9;不同砧穗组合的平均单果质量为辽艳/M9-T337>辽艳/辽砧2号>辽艳/GM256>辽艳/B9,辽艳/B9的果实光洁度、红色等外观品质表现最好;辽艳/B9的可滴定酸含量最高。辽艳/GM256的可溶性固形物含量、硬度、脆度值和固酸比等内在品质指标最高,与其他砧穗组合差异显著,果实风味更佳。【结论】综合各性状指标,以GM256自根砧嫁接辽艳苹果,不仅树体存活率高、枝类结构合理,而且产量高、果实品质优良,可考虑作为首选的砧穗组合使用。
关键词:辽艳苹果;矮化自根砧;生长发育;产量;果实品质
中图分类号:S661.1 文献标志码:A 文章编号:1009-9980(2023)07-1354-09
Effects of different dwarfing rootstocks on growth, yield and quality of Liaoyan apple trees
L? Tianxing1, SHEN Shurong2, JIANG Xiaojun1, YAN Zhongye1, LIU Zhi1*
(1Liaoning Institute of Pomology, Xiongyue 115009, Liaoning, China; 2Liaoning Agricultural College, Xiongyue 115009, Liaoning, China)
Abstract: 【Objective】 High yield, good quality, quick income and economical use of land are the advantages of high dense planting. Liaoyan apples are famous for high quality, good appearance and strong resistance to diseases. The effects of different dwarfing rootstocks on tree growth, photosynthetic characteristics, yield and quality of this variety were studied in this paperin order to provide scientific basis for selecting suitable rootstock-scion combinations to promote the further development of varieties. 【Methods】 The experiment was carried out in 2021 and 2022 at Liaoning Institute of Pomology. Liaoyan apple scions were grafted on different dwarfing rootstocks (B9, GM256, M9-T337, Liaozhen No. 2) in the spring of 2018. The healthy nursery trees were selected. for planting in the spring of 2019, eighty trees were planted for each combination. There were 20 trees of each combination in a row. The spacing was 1.0 m × 4.0 m. The differences of the tree body development, number of branches and proportion, photosynthetic characteristics, fruit yield and quality were compared in 2021 and 2022. SPSS17.0 software was used for statistical analysis of the data. The data obtained were processed using 2007 Microsoft Excel (Microsoft, Redmond, USA) software. 【Results】 The survival rate, tree height, coverage rate, crown diameter, ratio of variety to rootstock, length of main branches, number of main branches and total number of branches of the Liaoyan trees grafted on B9 were the lowest, while the proportion of the medium and short branches of the Liaoyan trees on B9, GM256, M9-T337 and Liaozhen No. 2 was the highest. The trees onB9 had the highest net photosynthetic rate and SPAD value, while the trees on GM256 had the lowest transpiration rate and the highest water utilization rate. The single annual yield, cumulative yield and high-quality fruit rate of the trees on GM256 were the highest, the fruit color difference L value and a value of the trees on B9 were the highest, and the fruit color difference b value of the trees on GM256 was the highest. Fruit shape index was not different among the trees on different rootstocks. The trees on B9 had the lowest fruit production. The trees on GM256 had the highest hardness, brittleness, soluble solid content and solid acid ratio of the fruits. The survival rate of Liaoyan apple trees with different rootstocks was GM256>Liaozhen No. 2>M9-T337>B9. The trees on B9 had the lowest coverage and crown diameter. The trees on M9-T337 had the largest diameter, and the ratio of the scion and rootstock diameter of the trees on B9 was the smallest, and that on GM256 was the largest. The field performance showed that B9 had the strongest dwarfing effect, resulting in too weak tree growth potential. The photosynthetic characteristics of the Liaoyan apple tree were affected by different rootstocks, and the chlorophyll content SPAD and the net photosynthetic rate of the trees on B9 were the highest. The trees on GM256 had the lowest transpiration rate and the highest water utilization rate. The output of the trees on B9 was the lowest, while those on GM256 was the highest. The high-quality fruit rate of the trees on B9 was the lowest and those on GM256 was the highest. GM256 could improve early yield and high-quality fruit yield. The trees on B9 had the highest color difference L and a value, and the trees on GM256 had the highest b value. There were no significant differences in fruit shape index and solid acid ratio among the four combinations. The trees on M9-T337 had the highest single fruit weight, the trees on B9 had the highest titrable acid value, and the trees on GM256 had the highest crispness value, soluble solid value and solid acid ratio. 【Conclusion】 The trees on GM256 was characterized by high survival rate, strong tree vigor, high coverage rate, more branches, high fruit yield, good brittleness, high content of soluble solids and high ratio of solid to acid, sothat GM256 could be used as the rootstock of Liaoyan apple in the south of Liaoning province. B9 is not recommended for its weak tree strength although its appearance of fruits is good. Liaozhen No. 2 and M9-T337 needs further observation on the subsequent growth and fruiting performance of the trees.
Key words: Liaoyan apple; Dwarfing self-rooted rootstock; Growth and development; Yield; Fruit quality
苹果矮砧密植栽培具有早果丰产、品质优良、见效快和经济化利用土地等优点[1],是苹果生产向集约化栽培、机械化作业方向发展的一种现代栽植方式,是世界现代苹果产业发展的重要标志[2]。近些年来,国内外选育出了多个优良砧木品系,并在生产中大量应用[2-3]。
因不同栽植区域立地条件、气候因素差异较大,开展适宜的砧木筛选成为矮砧栽培的首要环节及保证果实品质的前提。为此,前人在不同砧穗组合筛选、评价等方面进行了大量的研究工作,主要集中在适应性[1-4]、早花早果性[5-6]、生长发育、果实品质[7-10]和优质生产树形构建等方面[11-12]。马宝焜等[13]提出了矮化砧木选择的标准及矮砧栽培的要点。王金政等[14]、陈学森等[15]、李丙智[16]提出了适合中国的矮砧集约高效栽培模式,对应提出了适合不同地区发展的苹果砧穗组合,在生产中被大量借鉴实施。
矮化自根砧建园,因其具有矮化性好、管理方便、利于集约化栽培的优点,被世界先进苹果生产国作为新建果园首选的栽培模式[3]。辽宁省作为中国传统的苹果生产优势区,近年来也逐渐将矮化自根砧果园作为未来发展的趋势。目前生产中主要采用的是M系砧木。这类砧木虽具有早果丰产、矮化性好的优点,但是抗逆性差、抗寒性弱,在辽宁熊岳以北的大多数地区存在无法安全越冬的风险[17],无法大面积推广。因此,筛选出适合辽宁寒地的砧穗组合至关重要。
辽艳苹果是辽宁省果树科学研究所以寒富为母本、岳帅为父本杂交选育而成的晚熟苹果品种,具有品质优良、外观艳丽和抗性强等优点,在本地区综合表现优良。笔者在本试验中利用抗寒性较强的B9、GM256和辽宁省果树科学研究所自育的矮化抗寒砧木辽砧2号,以及本地区生产中应用较多的M9-T337共4种矮化砧木嫁接辽艳苹果为试材,比较分析不同自根砧对辽艳苹果树体生长、产量和品质的影响,旨在为新品种高效栽培及辽宁寒地矮化自根砧果园发展中适宜砧木的选择提供参考与理论依据。
1 材料和方法
试验于2019年在辽宁省果树科学研究所苹果试验区进行。试验区果园地势平坦,灌溉条件良好,土壤为轻壤砂土,土壤有机质含量(w,后同)1.33%,全氮含量0.64%,速效磷含量70.3 mg·kg-1,速效钾含量107 mg·kg-1,土壤孔隙度43.6%。1月平均气温-9.2 ℃,7月平均气温24.6 ℃,极端最低气温-31.7 ℃,年降水量686 mm,无霜期178 d。
1.1 试验材料
供试苹果品种为辽艳苹果,是辽宁省果树科学研究所以寒富为母本、岳帅为父本杂交选育而成的晚熟苹果品种。自根砧木为B9、GM256、M9-T337、辽砧2号4种砧木。2018年春季,在苗圃内选择枝条成熟度好、叶芽饱满的1年生辽艳枝条作为接穗,嫁接至4种砧木上,常规管理。2019年春,选择长势好的苗木定植。株距为1.0 m,行距为4.0 m,栽植行向为南北方向。此后,每年的树形均按照高纺锤形整形管理。果园株间采取地布覆盖,行间采取自然生草,灌溉采用微喷管灌溉,水分正常管理。
1.2 试验方法
试验设4个砧穗组合,分别为辽艳/B9、辽艳/GM256、辽艳/M9-T337和辽艳/辽砧2号。每个组合选择80株树作为试验树。分4行定植,每行定植4个组合,每个组合20株,共80株树。2021—2022年,调查苗木存活情况;用钢卷尺分别测定树高度、冠径(东西、南北)、主枝长度,并计算覆盖率,覆盖率(%)=冠径(东西)/行距×100;用游标卡尺分别测定嫁接口上和下5 cm处的品种和砧木的干粗直径。调查树体枝类组成结构,枝条依长度分为短枝(长度<5 cm)、中枝(5 cm≤长度≤15 cm)、长枝(15 cm<长度)。计算枝类比例,统计总枝数量。
2022年7月下旬,测定光合参数,包括净光合速率(Pn)、蒸腾速率(Tr)和水分利用效率(WUE)等。用日本KONICA公司的SPAD-502PLUS叶绿素仪,选择枝条中部功能葉,测定叶绿素相对含量。每株测定10枚叶片取其平均值。
2021—2022年的10月中旬,测定苹果平均单位面积产量,产量调查取样以单株为小区,5次重复,测出单株产量,按株行距折算平均单位面积产量。每个处理在采收时随机选100个果实计算优质果率。
果实成熟期分别在不同单株树冠的中上部东南方向随机采摘大小均匀、成熟度一致的100个果实,用于测定果实相关指标。单果质量用电子天平称量;可溶性固形物含量用WYT手持糖度计测定;用CY-1型硬度计测量果实去皮硬度;可滴定酸含量采用标准NaOH溶液滴定法测定;采用色差计(KonicaMinoltaCR-400,USA)测定果实赤道部位阳面的果皮色差值,具体参照马瑞娟等[18]的方法。苹果果肉脆度采用TATX质构仪测定,具体参照张娟[19]的方法。
1.3 数据处理与分析
数据采用Excel 2007进行处理,采用SPSS 17.0软件进行分析,用Duncans新复极差法进行平均数的差异显著性检验。
2 结果与分析
2.1 不同砧木对树体存活的影响
由图1可知,不同砧木对辽艳苹果树存活情况影响表现不一致。2021—2022年,4个砧穗组合的树体存活率大小表现一致,均为辽艳/GM256>辽艳/辽砧2号>辽艳/M9-T337>辽艳/B9;其中,辽艳/GM256最高,为93.3%,辽艳/B9的存活率显著低于其他3个砧穗组合。相同年份的辽艳/GM256、辽艳/辽砧2号和辽艳/M9-T337的树体存活率差异不显著,且2年间无变化。这说明不同砧木对树体的存活有影响,适宜的砧木能提高树体存活率。
2.2 不同砧木对树体生长发育的影响
表1是不同砧木对辽艳苹果树高度、冠径的影响结果。辽艳/B9的树高度为1.85 m,东西冠径为1.04 m,南北冠径为0.81 m,均显著小于其他砧穗组合,说明辽艳/B9的矮化性强。其他砧穗组合的树高度为3.07~3.36 m,东西冠径为1.39~1.52 m,南北冠径为1.35~1.56 m,差异不显著,说明树体的矮化性相近。
表2是不同砧木对品种和砧木干粗直径的影响。辽艳/M9-T337的品种直径最大,为7.73 cm,显著高于辽艳/GM256和辽艳/B9,与辽艳/辽砧2号差异不显著。辽艳/M9-T337的砧木直径最大,为11.37 cm,显著高于辽艳/GM256和辽艳/辽砧2号,与辽艳/B9差异不显著。各砧穗组合的品种/砧木的比值在0.36~0.72之间,均小于1.0,有“大脚”现象。辽艳/B9组合的比值显著小于其他组合,“大脚”现象严重。
不同砧木对主枝长度及数量的影响结果如表3所示。2021—2022年不同砧穗组合的树体主枝长度、数量均呈增加趋势,相同年份均表现为辽艳/GM256>辽艳/M9-T337>辽艳/辽砧2号>辽艳/B9。辽艳/GM256的主枝长度、主枝数量大于其他3个砧穗组合,差异显著。辽艳/B9的主枝长度、主枝数量显著小于其他3个砧穗组合。这说明,不同砧木影响主枝的长度及数量;单位面积的主枝长度短、数量少,对形成花芽的数量和结果初期产量形成会产生较大的影响。
表4是不同砧木对枝类组成的影响结果。不同砧穗组合的枝类组成存在差异,砧木对枝类和枝量的影响显著。辽艳/M9-T337的长枝比例、中枝比例均最高,分别为39.13%、30.31%,辽艳/B9的短枝比例最高,为47.03%。中枝+短枝的比例大小为辽艳/B9>辽艳/GM256>辽艳/辽砧2号>辽艳/M9-T337。2021—2022年,不同砧穗组合的总枝量均增加。在相同年份,辽艳/GM256的总枝量均显著大于其他3个砧穗组合。不同砧木影响辽艳苹果树枝类组成比例及总枝数量,总枝数量的增加及适当的中短枝比例,将有利于提高果实产量。
不同砧木对辽艳苹果树光合特性的影响结果见表5。净光合速率的大小为辽艳/B9>辽艳/M9-T337>辽艳/GM256>辽艳/辽砧2号;辽艳/B9最大,为13.12 ?mol·m-2·s-1,与最小的遼艳/辽砧2号相差1.24 ?mol·m-2·s-1,差异显著。辽艳/辽砧2号的蒸腾速率最大,与辽艳/M9-T337差异不显著,显著高于辽艳/B9及辽艳/GM256。水分利用率的高低为辽艳/GM256>辽艳/B9>辽艳/M9-T337>辽艳/辽砧2号;辽艳/GM256的最高,与其他3个砧穗组合差异显著。辽艳/B9的叶绿素含量SPAD值最大,与其他3个砧穗组合差异显著。这说明不同砧木对辽艳苹果树光合特性有影响。
2.3 不同砧木对果实产量及品质的影响
表6是不同砧木对产量、优质果率的影响。与2021年相比,2022年各砧穗组合的产量均有增加。相同年份及2 a(年)累计产量的大小变化趋势相同,均为辽艳/GM256>辽艳/M9-T337>辽艳/辽砧2号>辽艳/B9。辽艳/GM256的累计产量最高,为19 112.4 kg·hm-2,辽艳/B9的累计产量最低,仅为3 877.6 kg·hm-2,两者差异显著。这说明辽艳/GM256的早期丰产性明显优于其他砧穗组合,辽艳/B9的早期丰产性最差。辽艳/GM256、辽艳/M9-T337、辽艳/辽砧2号3个砧穗组合的优质果率无显著差异,但均显著高于辽艳/B9。
表7是不同砧木对果实外在品质的影响结果。不同组合的辽艳果实外在品质存在差异。辽艳/B9的L值和a值分别为48.70、45.43,分别显著高于其他3个砧穗组合,果实光洁度、红色等外观品质表现最好。辽艳/GM256与辽艳/辽砧2号的b值,显著高于辽艳/B9及辽艳/M9-T337,黄色饱和度更高。辽艳/M9-T337的单果质量最大,为285.6 g,辽艳/B9单果质量最小,为196.3 g,差异显著。各砧穗组合的果形指数在0.89~0.91之间,差异不显著。
砧木对果实内在品质的影响见表8。各砧穗组合果实的内在品质指标间存在差异,变化趋势不尽相同。果实的糖酸含量反映果实内在风味,不同砧穗组合的果实糖酸含量差异显著。辽艳/GM256的可溶性固形物含量为15.33%,显著高于辽艳/M9-T337、辽艳/辽砧2号,与辽艳/B9差异不显著。辽艳/B9的可滴定酸含量为0.37%,高于其他3个砧穗组合,差异显著。各组合的固酸比均处于较高的水平,辽艳/GM256、辽艳/M9-T337和辽艳/辽砧2号均高于辽艳/B9,差异显著。这说明不同砧穗组合可以影响果实的固酸比,进而影响果实风味。辽艳/GM256的硬度最大,为11.16 kg·cm-2,显著高于辽艳/M9-T337、辽艳/辽砧2号。脆度值以辽艳/GM256的最大,为3.77 kg·cm-2,高于其他3个砧穗组合,差异显著。
3 讨 论
3.1 不同矮化自根砧对辽艳苹果树体生长的影响
矮化砧与基砧及接穗的亲和性不佳,削弱了营养、水分等物质运输,限制了树势生长从而出现致矮效果[20]。郝婕等[10]的研究结果表明,不同的中间砧及自根砧嫁接天红2号后,树高度、冠幅差异显著。本研究中对4种矮化自根砧树嫁接辽艳苹果树体生长进行分析后发现,辽艳/B9组合的存活率、树高度、冠径、品种干粗直径、品种与砧木的干粗直径比、主枝长度等指标值均明显较小,树体表现存活率低、过于矮化,树势较弱,说明B9砧木与接穗品种的亲和力差。这与王骞等[6]、袁仲玉等[8]和郝婕等[10]的研究结果一致。
苹果树枝类组成和数量直接影响树体果实产量和品质[12],苹果是以中、短果枝结果为主的树种,合理的生长节奏和中庸的树势是树体丰产的前提[13]。从不同砧木对辽艳苹果树枝类组成影响的研究中可知,苹果植株中短枝比例由高到低依次为辽艳/B9>辽艳/GM256>辽艳/辽砧2号>辽艳/M9-T337。但是,辽艳/B9组合因存活率低、树势过弱等因素,产量远低于其他3个组合,不利于果实产量的形成。张强等[11]的研究认为,北京地区SH6矮化中间砧富士苹果栽植果园第4年的总枝量应为5.0×105~8.0×105 条·hm-2,是实现早果、优质丰产的关键技术指标。董建波[21]提出优质丰产的矮砧密植果园枝量应达到 9.0×105 条·hm-2。本研究发现,不同组合2022年(4年生)辽艳苹果总枝量为1.51×105~2.65×105条·hm-2,低于前人提出的丰产树的总枝量标准。这可能与前期的品种特性、立地条件等因素有关,同时也是果实产量与前人报道的相差较大的原因。
前人研究表明,光合作用是植株生長发育的基础,果树叶片光合参数受砧木的影响[22]。这种影响与砧木本身的遗传特性和砧穗组合的亲合性有关,光合参数在不同苹果砧穗组合中差异显著[7,23]。笔者在本研究中发现,不同砧穗组合对苹果叶片的净光合速率、蒸腾速率、SPAD值等指标的影响各不相同。辽艳/辽砧2号组合的叶片蒸腾速率最高,SPAD值和净光合速率则以辽艳/B9组合的最高。另外一般认为叶绿素含量越高果树的净光合速率就越高,在本研究中同样发现了这个现象,这与罗静等[24]、陈汝等[25]的研究结果一致。辽艳/辽砧2号组合的瞬时水分利率最高,说明在消耗等量水分的条件下,能固定更多的CO2,叶片可以更有效地利用土壤水分。
3.2 不同砧木对果实产量及品质的影响
赵同生等[5]的研究发现,不同矮化砧木对富士苹果早期产量影响显著。在本研究中,辽艳/B9产量最低,辽艳/GM256产量最高,辽艳/M9-T337、辽艳/辽砧2号的产量居中,不同砧木对产量的影响不同,与前人研究结果类似。砧木对果实品质的影响包括对果个大小、果形、色泽等外观品质和质地、风味等内在品质[26-28]。果实大小、果形指数和色泽是重要的外观品质指标,果实售价在很大程度上受其影响[9]。本研究中,不同砧木的辽艳平均单果质量、色差值均有显著差异,而果形指数无显著差异,辽艳苹果的果形指数均在0.89以上,果实的一致性较好,与袁仲玉等[8]、樊娟等[9]在瑞雪苹果上的研究结果相近。不同砧木对质地、风味等的影响也各不相同,硬度、脆度、可溶性固形物含量、可滴定酸含量、固酸比等指标各有大小,组合间差异显著,这与前人在长富2号、瑞雪等品种研究结果类似[8,11,25]。辽艳/GM256的硬度、脆度、可溶性固形物含量、固酸比等数值最大,使果实口感、风味更佳。而辽艳/B9可滴定酸含量最高、固酸比最小,内在品质明显降低。
4 结 论
在应用的4种砧穗组合中,辽艳/B9组合的存活率低、树势弱、早衰严重,不利于果实产量的形成,且辽艳/B9组合的产量显著低于辽艳/GM256、辽艳/辽砧2号及辽艳/M9-T337组合。M9-T337抗逆性差、抗寒性弱,存在无法安全越冬的风险。辽艳/辽砧2号组合的主枝数量、枝总量及果实产量显著低于辽艳/GM256组合,丰产性要差于辽艳/GM256组合。综合各性状指标,B9、M9-T337、辽砧2号等3种砧木不适合作为辽艳苹果树的自根砧使用。而以GM256自根砧嫁接辽艳苹果,不仅树体存活率高、枝类结构合理,而且产量高、果实品质优良,可考虑作为首选的砧穗组合使用。
参考文献 References:
[1] 于年文,里程辉,张秀美,李宏建,王宏,宋哲. 五种苹果砧木在辽南地区的试栽表现[J]. 特种经济动植物,2022,25(3):20-26.
YU Nianwen,LI Chenghui,ZHANG Xiumei,LI Hongjian,WANG Hong,SONG Zhe. Trial planting performance of five apple rootstocks in southern Liaoning Province[J]. Special Economic Animals and Plants,2022,25(3):20-26.
[2] 李丙智,韩明玉,张林森,雷小明. 我国矮砧苹果生产现状与发展缓慢的原因分析及建议[J]. 烟台果树,2010(2):1-4.
LI Bingzhi,HAN Mingyu,ZHANG Linsen,LEI Xiaoming. Analysis and suggestions on the production status and slow development of dwarf rootstock apples in China[J]. Yantai Fruits,2010(2):1-4.
[3] 韩国粉,李红伟. 介绍几种苹果砧木[J]. 西北园艺(果树),2018(4):30-33.
HAN Guofen,LI Hongwei. Introduction of several apple rootstocks[J]. Northwest Horticulture,2018(4):30-33.
[4] 杨锋,伊凯,刘志,荣志祥,王冬梅,张子维. 苹果矮化砧木辽砧2号在辽宁葫芦岛的应用表现[J]. 中国果树,2006(6):18-20.
YANG Feng,YI Kai,LIU Zhi,RONG Zhixiang,WANG Dongmei,ZHANG Ziwei. Application performance of apple dwarf rootstock Muliaozhen No.2 in Huludao,Liaoning Province[J]. China Fruits,2006(6):18-20.
[5] 赵同生,赵国栋,张朝红,张新生,杨凤秋,陈东玫,赵永波,付友. 不同矮化中间砧对宫崎短枝富士树体生长、产量和品质的影响[J]. 果树学报,2016,33(11):1379-1387.
ZHAO Tongsheng,ZHAO Guodong,ZHANG Chaohong,ZHANG Xinsheng,YANG Fengqiu,CHEN Dongmei,ZHAO Yongbo,FU You. Effect of dwarfing interstocks on tree growth,yields and fruit quality of ‘Miyazakifuji apple[J]. Journal of Fruit Science,2016,33(11):1379-1387.
[6] 王騫,杨廷桢,高敬东,蔡华成,李春燕,杜学梅,王淑婷,弓桂花. 不同砧木对‘长富2号幼树生长及果实品质的影响[J]. 中国农学通报,2017,33(23):16-21.
WANG Qian,YANG Tingzhen,GAO Jingdong,CAI Huacheng,LI Chunyan,DU Xuemei,WANG Shuting,GONG Guihua. Effects of different rootstocks on tree growth and fruit quality of Malus pumila ‘Nagafu No.2[J]. Chinese Agricultural Science Bulletin,2017,33(23):16-21.
[7] 赵通,程丽,王城,游继权,朱燕芳,王延秀. 不同苹果砧穗组合的生长及光合特性[J]. 西北植物学报,2018,38(9):1707-1716.
ZHAO Tong,CHENG Li,WANG Cheng,YOU Jiquan,ZHU Yanfang,WANG Yanxiu. Effect of different apple scion-rootstock combinations on growth and photosynthesis characteristics[J]. Acta Botanica Boreali-Occidentalia Sinica,2018,38(9):1707-1716.
[8] 袁仲玉,樊良栋,韦德闯,张琦卓,赵政阳,钱加乐. 不同砧穗组合对‘瑞雪苹果树体生长、产量和品质的影响[J]. 北方园艺,2021(20):53-58.
YUAN Zhongyu,FAN Liangdong,WEI Dechuang,ZHANG Qizhuo,ZHAO Zhengyang,QIAN Jiale. Effects of dwarfing rootstocks on tree growth,yield and fruit quality of ‘Ruixue apple[J]. Northern Horticulture,2021(20):53-58.
[9] 樊娟,孙鲁龙,刘振中,杨舜博,朱佳顺,史涛,赵政阳. 不同矮化中间砧对瑞雪苹果果实品质的影响[J]. 果树学报,2023,40(4):680-689.
FAN Juan,SUN Lulong,LIU Zhenzhong,YANG Shunbo,ZHU Jiashun,SHI Tao,ZHAO Zhengyang. Effects of different dwarfing interstocks on fruit quality of Ruixue apple[J]. Journal of Fruit Science,2023,40(4):680-689.
[10] 郝婕,李学营,王金鑫,黄晶淼,冯建忠,索相敏. 不同矮化砧木对‘天红2号苹果树体生长及产量品质的影响[J]. 河北农业大学学报,2022,45(2):8-13.
HAO Jie,LI Xueying,WANG Jinxin,HUANG Jingmiao,FENG Jianzhong,SUO Xiangmin. Effects of different dwarfing rootstocks on growth characteristic and fruit yield and quality of ‘Tianhong 2 apple trees[J]. Journal of Hebei Agricultural University,2022,45(2):8-13.
[11] 张强,魏钦平,刘松忠,王小伟,尚志华,路瑾瑾. SH6矮化中间砧富士苹果幼树至结果初期树冠结构、产量和品质的形成[J]. 中国农业科学,2013,46(9):1874-1880.
ZHANG Qiang,WEI Qinping,LIU Songzhong,WANG Xiaowei,SHANG Zhihua,LU Jinjin. Formation of canopy structure,yield and fruit quality of ‘Fuji apple with SH6 dwarf interstock from juvenility to fruiting early stage[J]. Scientia Agricultura Sinica,2013,46(9):1874-1880.
[12] 李宏建,王宏,刘志,于年文,宋哲,张秀美,里程辉. 岳阳红/77-34/山定子砧穗组合的苹果树体结构、果实产量和品质形成特点[J]. 果树学报,2019,36(1):56-66.
LI Hongjian,WANG Hong,LIU Zhi,YU Nianwen,SONG Zhe,ZHANG Xiumei,LI Chenghui. Formation characteristics of tree structure,fruit yield and quality in the apple stock-scion combination of Yue Yanghong with 77-34 interstock and Malus baccata Borkh. rootstock[J]. Journal of Fruit Science,2019,36(1):56-66.
[13] 马宝焜,徐继忠,孙建设. 关于我国苹果矮砧密植栽培的思考[J]. 果树学报,2010,27(1):105-109.
MA Baokun,XU Jizhong,SUN Jianshe. Consideration for high density planting with dwarf rootstocks in apple in China[J]. Journal of Fruit Science,2010,27(1):105-109.
[14] 王金政,薛晓敏. 山东苹果矮砧集约高效栽培模式及技术要点[J]. 山东农业科学,2013,45(11):125-128.
WANG Jinzheng,XUE Xiaomin. Intensive and efficient cultivation mode and technical points of apple dwarf rootstock in Shandong Province[J]. Shandong Agricultural Sciences,2013,45(11):125-128.
[15] 陳学森,韩明玉,苏桂林,刘凤之,过国南,姜远茂,毛志泉,彭福田,束怀瑞. 当今世界苹果产业发展趋势及我国苹果产业优质高效发展意见[J]. 果树学报,2010,27(4):598-604.
CHEN Xuesen,HAN Mingyu,SU Guilin,LIU Fengzhi,GUO Guonan,JIANG Yuanmao,MAO Zhiquan,PENG Futian,SHU Huairui. Discussion on todays world apple industry trends and the suggestions on sustainable and efficient development of apple industry in China[J]. Journal of Fruit Science,2010,27(4):598-604.
[16] 李丙智. 中国苹果矮砧栽培现状与栽培技术要求[J]. 落叶果树,2020,52(6):1-3.
LI Bingzhi. Present situation and technical requirements of apple dwarf stock cultivation in China[J]. Deciduous Fruits,2020,52(6):1-3.
[17] 李宏建,王宏,刘志,于年文,里程辉,张秀美,宋哲. 栽植株距对昌红富士/SH6自根砧苹果幼树至初结果树体生长和果实品质的影响[J]. 果树学报,2022,39(9):1619-1627.
LI Hongjian,WANG Hong,LIU Zhi,YU Nianwen,LI Chenghui,ZHANG Xiumei,SONG Zhe. Effects of different spacing on tree growth and fruit quality of Chang Hong Fuji apple/SH6 during early stage after planting[J]. Journal of Fruit Science,2022,39(9):1619-1627.
[18] 马瑞娟,张斌斌,张春华,蔡志翔,颜志梅. 采前除袋铺设反光膜对桃果实着色及相关基因表达的影响[J]. 园艺学报,2015,42(11):2123-2132.
MA Ruijuan,ZHANG Binbin,ZHANG Chunhua,CAI Zhixiang,YAN Zhimei. Effect of bag removing with reflective film mulching before harvest on fruit coloration and expression of anthocyanin related genes in peach[J]. Acta Horticulturae Sinica,2015,42(11):2123-2132.
[19] 张娟. ‘秦冠‘富士果实发育过程中质地差异及相关机理分析[D]. 杨凌:西北农林科技大学,2015.
ZHNG Juan. Related mechanism of differences in fruit texture of apple cultivars ‘Qinguan and ‘Fuji during fruit development[D]. Yangling:Northwest A & F University,2015.
[20] 隗晓雯. 苹果砧木矮化性评价指标的研究及应用[D]. 保定:河北农业大学,2014.
KUI Xiaowen. The research and application of parameters for evaluating dwarfing ability in apple rootstocks[D]. Baoding:Hebei Agricultural University,2014.
[21] 董建波. 苹果矮砧密植园个体与群体参数研究[D]. 保定:河北农业大学,2010.
DONG Jianbo. Research on individual and group parameters of apple orchard with intensive planting on dwarf rootstock[D]. Baoding:Hebei Agricultural University,2010.
[22] GON?ALVES B,MOUTINHO-PEREIRA J,SANTOS A,SILVA A P,BACELAR E,CORREIA C,ROSA E. Scion-rootstock interaction affects the physiology and fruit quality of sweet cherry[J]. Tree Physiology,2006,26(1):93-104.
[23] 杨文渊,陶炼,谢红江,陈善波,李艳峰,涂美艳. 四川冷凉高原区苹果不同砧穗组合光合特性研究[J].园艺学报,2017,44(S1):2451.
YANG Wenyuan,TAO Lian,XIE Hongjiang,CHEN Shanbo,LI Yanfeng,TU Meiyan. Photosynthetic characteristics of different rootstock-scion combinations in cool plateaux region apple[J].Acta Horticulturae Sinica,2017,44(S1):2451.
[24] 罗静,易盼盼,王飞,韩明玉,吴维芳,王荣花. 不同矮化中间砧对苹果苗光合特性的影响[J]. 西北农林科技大学学报(自然科学版),2016,44(4):177-184.
LUO Jing,YI Panpan,WANG Fei,HAN Mingyu,WU Weifang,WANG Ronghua. Effects of different dwarfing interstocks on photosynthetic characteristics of grafted apple trees[J]. Journal of Northwest A & F University (Natural Science Edition),2016,44(4):177-184.
[25] 陈汝,薛晓敏,高兴永,徐志芳,王爱清,王金政. 不同矮化中间砧对红将军苹果树体生长、光合及产量和品质的影响[J]. 江苏农业科学,2021,49(3):133-137.
CHEN Ru,XUE Xiaomin,GAO Xingyong,XU Zhifang,WANG Aiqing,WANG Jinzheng. Effects of different dwarfing intermediate rootstocks on growth,photosynthesis,yield and quality of Hongjiangjun apple tree[J]. Jiangsu Agricultural Sciences,2021,49(3):133-137.
[26] 杜学梅,杨廷桢,高敬东,王骞,蔡华成,李春燕. 苹果砧木对嫁接品种影响的研究进展[J]. 西北农业学报,2020,29(4):487-495.
DU Xuemei,YANG Tingzhen,GAO Jingdong,WANG Qian,CAI Huacheng,LI Chunyan. Advances of effect of apple rootstocks on grafted varieties[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2020,29(4):487-495.
[27] 李民吉,张强,李兴亮,周贝贝,杨雨璋,周佳,张军科,魏钦平. SH系矮化中间砧对‘富士苹果树体生长、产量和果实品质的影响[J]. 园艺学报,2018,45(10):1999-2007.
LI Minji,ZHANG Qiang,LI Xingliang,ZHOU Beibei,YANG Yuzhang,ZHOU Jia,ZHANG Junke,WEI Qinping. Effects of five different dwarfing interstocks of SH on growth,light distribution,yield and fruit quality in‘Fuji apple trees[J]. Acta Horticulturae Sinica,2018,45(10):1999-2007.
[28] 束懷瑞. 苹果学[M]. 北京:中国农业出版社,1999.
SHU Huairui. Apple science[M]. Beijing:China Agriculture Press,1999.