李宏建 王宏 于年文 宋哲 里程辉 张秀美 韩丽红
摘 要:【目的】了解以平邑甜茶為砧木、采用高位嫁接方式的丽嘎拉苹果幼树至结果树的树体结构和果实产量的形成规律,为辽宁寒地苹果密植园中该种栽培模式的推广应用提供理论依据。【方法】以丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶砧穗组合苹果树为试材,调查2011—2019年树体结构、枝类组成、果实产量的年生长动态变化,评价2种砧木果实产量的冠层空间分布特点和品质差异。【结果】2011—2019年丽嘎拉/平邑甜茶苹果树高、主枝长和覆盖率等树体结构参数高于丽嘎拉/GM256/平邑甜茶。2019年丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶苹果树冠覆盖率分别为74.70%和62.30%,两者间差异显著。2011—2019年丽嘎拉/GM256/平邑甜茶品种/砧木干径比值为0.90~0.83,树体表现为“大脚”现象;2011—2014年丽嘎拉/平邑甜茶品种/砧木干径比值为0.87~0.77,树体表现为“大脚”现象,而2015—2019年为1.03~1.21,树体表现为“小脚”现象。2011—2019年丽嘎拉/平邑甜茶树体总枝量高于丽嘎拉/GM256/平邑甜茶,丽嘎拉/平邑甜茶树体总枝量在2015—2017年快速增长,由37.39×104条·hm-2增加至96.70×104条·hm-2,2017—2019年趋于稳定,3年分别为96.70×104条·hm-2、95.10×104条·hm-2、93.05×104条·hm-2。2011—2014年丽嘎拉/平邑甜茶苹果树长枝比例高于丽嘎拉/GM256/平邑甜茶,2015—2019年短枝比例高于丽嘎拉/GM256/平邑甜茶。2013—2019年丽嘎拉/平邑甜茶果实产量高于丽嘎拉/GM256/平邑甜茶,7年累计产量分别为216 686.25 kg·hm-2和158 802.99 kg·hm-2。果实产量在冠层内的分布存在明显的差异性,丽嘎拉/平邑甜茶果实产量主要分布在冠层高度≥2.01 m的空间区域,占总产量的70.86%;而丽嘎拉/GM256/平邑甜茶为1.01~3.00 m,占总产量的76.11%。丽嘎拉/平邑甜茶果实单果质量、果形指数、硬度、果面光亮度和红色程度高于丽嘎拉/GM256/平邑甜茶,而可溶性固形物含量和固酸比低于丽嘎拉/GM256/平邑甜茶。【结论】与丽嘎拉/GM256/平邑甜茶砧穗组合相比,以平邑甜茶为砧木,采用高位嫁接方式的丽嘎拉苹果树具有树高生长量大、主枝长、覆盖率高,总枝量多、短枝比例高、果实外观品质好、产量高等优势。
关键词:苹果;砧穗组合;高位嫁接;枝类组成;产量;品质
中图分类号:S661.1 文献标志码:A 文章编号:1009-9980(2023)07-1363-11
Formation characteristics of tree structure and fruit quality in Regal Gala apple on Malus hupehensis Rehd. with top grafting
LI Hongjian, WANG Hong*, YU Nianwen, SONG Zhe, LI Chenghui, ZHANG Xiumei, HAN Lihong
(Liaoning Institute of Pomology, Xiongyue 115009, Liaoning, China)
Abstract: 【Objective】 Apple stion combination of Regal Gala on Malus hupehensis Rehd. by top-grafting was used as the test material, and the formation patterns of tree structure and fruit yield from young stage to fruiting stage was investigated, so as to provide a theoretical basis for the application and popularization of this cultivation mode in high-density planting orchards in cold regions of Liaoning province. 【Methods】 The Regal Gala on M. hupehensis Rehd., and Regal Gala with the interstock of GM256 and understock of M. hupehensis Rehd. were used as the test materials, and the annual growth dynamics of tree, composition proportion of branches and fruit yield were investigated from 2011 to 2019. In 2019, the test trees were divided into 4 levels according to the canopy heights, and the differences in fruit yield at different canopy heights were compared. The differences in fruit quality between the test materials were compared. Measurement indicators included fruit mass, fruit shape index, firmness, soluble solids content, titratable acidity, TSS/TA ratio, color difference value, etc. 【Results】 The tree growth of Regal Gala could be affected by the rootstock. The growth rate of tree height, coverage rate, scaffold limb length and trunk diameter of Regal Gala/M. hupehensis Rehd. were higher than those of Regal Gala /GM256/M. hupehensis Rehd. from 2011 to 2019. The rapid growth of tree height and coverage rate was conducive to increasing a number of branches, which provided guarantee for the formation of fruit yield at the fruit bearing period. The coverage rate in Regal Gala /M. hupehensis Rehd. and Regal Gala /GM256/M. hupehensis Rehd. were 74.70% and 62.30%, respectively in 2019. By comparing the trunk diameter ratio of variety/rootstock, we found the Regal Gala/GM256/M. hupehensis Rehd. showed an overgrowth phenomenon “big foot” and the ratios of variety/rootstock were 0.90 to 0.83 from 2011 to 2019. Regal Gala/M. hupehensis Rehd. showed a “big foot” phenomenon from 2011 to 2014 and a “small foot” phenomenon from 2015 to 2019, and the ratios of variety/rootstock were 0.87 to 0.77 and 1.01 to 1.21, respectively. There was strong ground fixation of the rootstock of M. hupehensis Rehd., and the inclination and lodging phenomenon of tree has not been found in the cultivation and management. The growth rate of total branch number of Regal Gala/M. hupehensis Rehd. was significantly higher than that of Regal Gala/GM256/M. hupehensis Rehd. from 2011 to 2019. A number of branches of Regal Gala/M. hupehensis Rehd. increased rapidly and the numbers were 37.39 × 104 per hm2 to 96.70 × 104 per hm2 from 2015 to 2017, a number of branches tended to be stable and the numbers were 96.70 × 104 per hm2, 95.10 × 104 per hm2 and 93.05 × 104 per hm2 from 2017 to 2019. Compared to the composition of tree branches, the proportion of long shoots of Regal Gala/M. hupehensis Rehd. was higher than that of Regal Gala/GM256/M. hupehensis Rehd. from 2011 to 2014, while the proportion of spurs of Regal Gala/M. hupehensis Rehd. was higher than Regal Gala/GM256/M. hupehensis Rehd. from 2015 to 2019. From 2014 to 2016, the fruit yield showed a trend of rapid increase year by year, and the fruit yield tended to be stable from 2017 to 2019. The growth rate of fruit yield of Regal Gala/M. hupehensis Rehd. was higher than that of Regal Gala/GM256/M. hupehensis Rehd. The cumulative yields of Regal Gala /M. hupehensis Rehd. and Regal Gala/GM256/M. hupehensis Rehd. were 216 686.25 kg·hm-2 and 158 802.99 kg·hm-2, respectively from 2013 to 2019, and there was a significant difference between them. By investigating the distribution proportion of fruit yield at different canopy heights, it was found there was significant difference in the distribution of fruit yield in different canopy between Regal Gala/M. hupehensis Rehd. and Regal Gala/GM256/M. hupehensis Rehd. The fruit yield of Regal Gala/M. hupehensis Rehd. was mainly concentrated in the canopy area height greater than and equal to 2.00 m, while the fruit yield of Regal Gala/M. hupehensis Rehd. and Regal Gala/GM256/M. hupehensis Rehd. was mainly concentrated in the heights from 1.00 to 3.00 m. They accounted for 70.86% and 76.11% of the total yield, respectively. The lowest proportion of fruit yield distribution in the canopy of Regal Gala /M. hupehensis Rehd. and Regal Gala/GM256/M. hupehensis Rehd. was at the canopy heights less than or equal to 1.00 m, greater than and equal to 3.00 m respectively. By comparing with the differences in fruit quality, it was found the fruit mass, fruit shape index, firmness, fruit surface brightness and red degree of Regal Gala/M. hupehensis Rehd. were better than those of Regal Gala/GM256/M. hupehensis Rehd., while the soluble solids content and TSS/TA ratio were lower than Regal Gala/GM256/M. hupehensis Rehd. Tree crown of Regal Gala/M. hupehensis Rehd. was higher, the fruit concentrated distribution area was the upper middle crown, the branches had a low degree of shelter to the fruit, the lighting conditions were much better and the fruit appearance quality was better. 【Conclusion】Taking M. hupehensis Rehd. as the rootstock and adopting the top grafting method, Regal Gala/M. hupehensis Rehd. showed that growth potential was stronger, coverage rate was larger, the number of total branches was larger, the proportion of spur was higher, exterior quality of fruit was superior and the yield was higher, which was suitable for popularization and application in high-density planting cultivation in cold regions of Liaoning province.
Key words: Apple; Rootstock-scion combination; Top grafting; Branch composition; Fruit yield; Fruit qualities
果园密植栽培是果树实现早期丰产,获得早期收益的有效方式。苹果密植栽培是世界苹果栽培发展的趋势和方向,目前实现苹果密植栽培的最主要途径是利用矮化砧木,而中国苹果密植栽培主要采取自根砧和中间砧的栽培方式[1-3]。辽宁苹果密植栽培先后引进、选育了大量的矮化砧木,如GM256、77-34、辽砧2号、M9、M26、MM106、T337、SH6等。辽宁因冬季寒冷,干旱少雨,M系、MM系等矮化自根砧木经常发生冻害、死树等现象,无法安全越冬。因此,苹果矮化自根砧栽培在辽宁苹果产区发展速度缓慢,应用面积较少[4-6]。利用中间砧栽培是辽宁苹果密植栽培的主要方式,其中,GM256作为中间砧被广泛应用。GM256砧木具有矮化性、早果性、丰产性好等优点,但干性差,易倒伏,新植园需利用架式栽培,实现果园的整齐性。辽宁省苹果栽培区域多为丘陵、山地和缓坡,采用GM256中间砧栽培的苹果树,盛果期经常出现中心干长势偏弱、主枝光秃现象严重、结果部位外移、树势衰弱明显、主干日灼和腐烂病发生严重等问题[7]。因此,筛选适宜辽宁寒地果园密植栽培的苹果优良砧木变得尤为重要。
平邑甜茶是湖北海棠中的一个优良、大叶类型,具有较强的无融合生殖能力。平邑甜茶根系发达、整齐度高、抗寒性好和抗病性强,作为抗寒砧木在苹果栽培生产中被广泛应用[8-9]。笔者发现利用平邑甜茶作为砧木,接穗采用高位嫁接方式,按照高纺锤形树形培养,采取适宜栽植密度,参照矮砧密植栽培模式管理,可以达到控制树势,早期丰产的目的,实现果园无架式密植栽培[10-12]。丽嘎拉是辽宁省果树科学研究所从新西兰引进的嘎拉芽变苹果品种,因其色泽艳丽、丰产性好,作为中熟苹果品种深受消费者的喜爱[13]。笔者在本研究中以平邑甜茶为砧木,采用高位嫁接方式的丽嘎拉/平邑甜茶砧穗组合苹果树为试材,以生产中常用的GM256作为中间砧,以丽嘎拉/GM256/平邑甜茶砧穗组合为对照,系统性评价苹果幼树至结果树的树体结构参数和果实产量的形成规律,为辽宁寒地密植果园建设中,利用平邑甜茶为砧木,采取高位嫁接栽培模式的应用推广提供理论参考依据。
1 材料和方法
试验在辽宁省果树科学研究所苹果试验区进行,试验区地势平坦,土壤为轻砂壤土,土壤有机质含量(w,后同)1.33%,全氮含量0.64%,速效磷含量70.3 mg·kg-1,速效钾含量107 mg·kg-1。年降水量686 mm,无霜期178 d,年平均气温9.0 ℃,1月平均气温-9.2 ℃,极端最低气温-31.7 ℃。果园行间自然生草,灌溉采用微喷管灌系统,666.7 m2施腐熟有机肥3000~3500 kg。
1.1 试验材料
供试苹果品种为丽嘎拉,试验设2个处理,分别为丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶。2011年春,栽植丽嘎拉/GM256/平邑甜茶砧穗组合苹果苗木,苗木要求基砧平邑甜茶干径和长度分别为1.5~1.6 cm和10~11 cm,中间砧GM256干径和长度分别为1.3~1.5 cm和30~31 cm,无分枝,高度为90~110 cm。2011年春,采取“两头忙”建园方式,栽植丽嘎拉/平邑甜茶砧穗组合苹果半成品苗木。该组合苗木基砧为3年生平邑甜茶,基砧距离地面5 cm和40 cm处干径分别为1.5~1.6 cm和1.3~1.5 cm。将丽嘎拉接穗利用舌接法,高位嫁接到平邑甜茶砧木距离地面60 cm处。2种砧穗组合苗木定植株行距为2.50 m×4.00 m,南北行栽植,按照高纺锤形树形进行整形修剪。
1.2 试验方法
试验于2011—2019年进行,选择生长势基本一致、无病害的试验树30株,2011—2019年每年10月用游标卡尺分别测量品种和砧木嫁接口上部和下部5 cm处的干径。其中,丽嘎拉/GM256/平邑甜茶砧穗组合中砧木测量为GM256砧木的干径。利用钢卷尺分别测量树高、主枝长、冠径(东西),计算覆盖率(%)=冠径(东西)/行距×100;调查树体的主枝数、总枝量,统计短枝、中枝和长枝的比例。2013—2019年每年9月调查单株产量,折合公顷产量,统计7年累计产量;2019年9月按照冠层分格的方法,将试验树从地面到顶部分成4个冠层空间(<1.00 m、1.00~2.00 m、>2.00~3.00 m和>3.00 m),测定不同冠层内的果实产量,计算产量分布比例[14]。
2019年果实成熟期分别在树冠东南方向随机采摘大小均匀、成熟度一致的果实100个,用于测定果实相关指标。果实单果质量用百分之一天平测量;果实的纵径和横径用游标卡尺测量,计算果形指数;果实硬度、可溶性固形物和可滴定酸含量分别用GY-1型硬度计、DR-103型电子糖量仪和酸碱滴定法测定,果皮色差值采用色差计(Konica Minolta CR-400,USA)测定[12]。
1.3 数据处理与分析
数据统计采用Excel软件,数据差异显著性分析采用SPSS 13.0分析软件。
2 结果与分析
2.1 树体干粗直径的生长动态变化
由表1可见,2011—2019年丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶苹果树品种和砧木干径呈现逐年增加的变化趋势。2011—2019年丽嘎拉/平邑甜茶品种干径生长速度高于丽嘎拉/GM256/平邑甜茶;2011—2016年丽嘎拉/平邑甜茶砧木干径高于丽嘎拉/GM256/平邑甜茶,2017—2019年低于丽嘎拉/GM256/平邑甜茶。观察品种/砧木干径比值,发现丽嘎拉/平邑甜茶苹果树2011—2014年表现为“大脚”现象,2015—2019年表现为“小腳”现象;而丽嘎拉/GM256/平邑甜茶苹果树2011—2019年表现为“大脚”现象。由此说明,结果期丽嘎拉/平邑甜茶苹果树砧木干径生长速度低于品种,会表现出轻微的“小脚”现象。
2.2 树高和树冠覆盖率的生长动态变化
由图1可见,2011—2019年丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶苹果树高年生长量逐年下降,2011—2016年丽嘎拉/平邑甜茶树高年生长量高于丽嘎拉/GM256/平邑甜茶,2019年丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶树高分别为4.15 m和3.22 m,两者间差异显著(表2)。由此说明,幼树期丽嘎拉/平邑甜茶苹果树高年生长量的快速增加是丽嘎拉/平邑甜茶树高显著高于丽嘎拉/GM256/平邑甜茶的主要原因。
由图2可见,2011—2016年和2018—2019年丽嘎拉/平邑甜茶苹果树冠覆盖率年生长量高于丽嘎拉/GM256/平邑甜茶。2019年丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶树冠覆盖率分别为74.70%和62.30%,两者间差异显著(表2)。由此说明,与丽嘎拉/GM256/平邑甜茶相比,丽嘎拉/平邑甜茶树冠覆盖率增长速度快,可以为枝条生长提供足够的空间,有利于结果期树体枝量的快速增加和产量的形成。
2.3 主枝长和数量的生长动态变化
由图3可见,2011—2019年丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶苹果树主枝长年生长量表现为“前期快速增长,后期增长趋缓”的变化趋势。由表2可见,2019年丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶苹果树主枝长分别为1.43 m和1.15 m,两者间差异显著。
由图4可见,2011—2019年丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶苹果树主枝数呈现“升高-下降”的变化趋势。2011—2015年丽嘎拉/平邑甜茶主枝数高于丽嘎拉/GM256/平邑甜茶,2016—2019年低于丽嘎拉/GM256/平邑甜茶。幼树期丽嘎拉/平邑甜茶主枝数的快速增加,有利于苹果树高纺锤形树形的培养和早期产量的形成。结果期采取适当缩减主枝的方式,改善树体光照条件和提高果实品质,因此2017—2019年树体主枝数出现小幅减少的趋势。
2.4 枝类组成数量和比例的生长动态变化
由表3可见,2014—2019年丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶苹果树枝总量呈快速增长趋势,2011—2019年丽嘎拉/平邑甜茶枝总量高于丽嘎拉/GM256/平邑甜茶。2011—2014年丽嘎拉/平邑甜茶长枝比例高于丽嘎拉/GM256/平邑甜茶,2015—2019年低于丽嘎拉/GM256/平邑甜茶;2013—2019年丽嘎拉/平邑甜茶短枝比例高于丽嘎拉/GM256/平邑甜茶。与丽嘎拉/GM256/平邑甜茶相比,幼树期丽嘎拉/平邑甜茶高比例的长枝数量有利于苹果树高纺锤形树形的快速构建,而结果期高比例的短枝数量能够为结果树早期丰产和稳产提供保障。
2.5 果实产量和品质的动态变化
由图5可见,2013—2016年丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶苹果树果实产量呈现快速增长的趋势,2017—2019年果实产量趋于稳定。2014—2019年丽嘎拉/平邑甜茶果实产量高于丽嘎拉/GM256/平邑甜茶。统计2013—2019年苹果树累计产量(表4),笔者发现丽嘎拉/平邑甜茶和丽嘎拉/GM256/平邑甜茶苹果树7年累计果实产量分别为216 686.25 kg·hm-2和158 802.99 kg·hm-2,两者间差异显著。由此可见,丽嘎拉/平邑甜茶苹果树丰产性和稳产性优于丽嘎拉/GM256/平邑甜茶。
为了明确砧木对丽嘎拉苹果树果实产量空间分布的影响,将树冠按照冠层高度分为4个区域,统计不同冠层高度内果实产量分布比例。由表5可见,丽嘎拉/平邑甜茶果实产量主要分布在冠层高度>2.00 m的空间区域,占全树总产量的70.86%;而丽嘎拉/GM256/平邑甜茶果實产量主要分布在冠层高度1.00~3.00 m的空间区域,占全树总产量的76.11%。由此说明,丽嘎拉/平邑甜茶树冠高大,树冠中上部区域光照和养分积累好,结果枝和果实产量主要集中分布树冠中上部区域;由于GM256中间砧对丽嘎拉/GM256/平邑甜茶树高生长的抑制作用,树冠上部的新梢和枝条萌发数量少,果实产量主要分布在树冠中下部区域。
由表6可见,丽嘎拉/平邑甜茶果实单果质量、果形指数、硬度、可滴定酸含量高于丽嘎拉/GM256/平邑甜茶,而果实可溶性固形物含量和固酸比低于丽嘎拉/GM256/平邑甜茶。由此说明丽嘎拉/平邑甜茶苹果树冠高大、枝叶繁茂,果实单果质量、果形指数和硬度等果实品质好;而GM256中间砧对丽嘎拉/GM256/平邑甜茶苹果树养分运输具有滞阻作用,叶片光合作用制造的养分对果实分配数量多,因此果实可溶性固形物含量和固酸比等品质较好。
由表7可见,丽嘎拉/平邑甜茶苹果果实色差L值、a值均显著高于丽嘎拉/GM256/平邑甜茶,而果面色差b值低于丽嘎拉/GM256/平邑甜茶。由此说明,丽嘎拉/平邑甜茶果实果面光亮度、红色程度优于丽嘎拉/GM256/平邑甜茶。由于丽嘎拉/平邑甜茶树体高大,主枝和叶片对果实遮挡程度低,果实生长能获得充足的空间和较好的光照条件,因此果面色泽艳丽、外观品质好。
3 讨 论
砧木能够影响苹果树的生长势和抗逆性,苹果品种利用砧木的抗寒、抗旱等特性增强其适应性,适宜的砧穗组合是实现苹果树优质丰产的基础[15-17]。在栽培管理中,笔者发现采用平邑甜茶为砧木,高位嫁接后的丽嘎拉苹果树干性强、固地性好,新栽植苹果树无须立架支撑,苹果园可保持较高的整齐度;而丽嘎拉/GM256/平邑甜茶苹果树干性弱,幼树期无立架支撑的苹果树经常会出现树体倾斜的现象,影响果园日常管理和机械化作业。孙长乾[18]和宋哲等[10]发现平邑甜茶高位嫁接富士苹果树存在“小脚”现象,笔者也发现丽嘎拉/平邑甜茶苹果树表现为轻微“小脚”现象。果树“大小脚”现象是砧穗轻度不亲和的一种表现,栽培生产中果树“小脚”现象的存在可能会造成树势衰弱,嫁接口部位容易断裂,影响果园作业等问题[17,19]。但在本研究中,未发现丽嘎拉/平邑甜茶苹果树出现此类现象。与丽嘎拉/GM256/平邑甜茶相比,丽嘎拉/平邑甜茶苹果树表现为树势强、干性好、整齐度高,果园管理可采取无架式栽培模式,优化果园建立措施,节省果园成本投入。
果树嫁接砧木后,接穗和砧木会形成“砧穗共生体”,砧穗间组织结构的变化能够影响树体的养分运输、枝类结构和生长发育[20-22]。笔者在本研究中以平邑甜茶为砧木,采用高位嫁接方式的丽嘎拉苹果树按照高纺锤形树形培养,参照矮砧密植栽培模式管理。与丽嘎拉/GM256/平邑甜茶相比,丽嘎拉/平邑甜茶苹果树表现为树高和主枝(长度和数量)增长速度快、树冠覆盖率高,幼树期长枝数量多,结果期短枝比例高的特点。董建波[23]认为优质、丰产的矮砧密植苹果园枝芽量为9.0×105条·hm-2,高登涛等[24]等认为高纺锤形苹果树总枝量为8.1×105条·hm-2时,需要增加留枝量。在本研究中,笔者发现丽嘎拉/平邑甜茶树体总枝量高于丽嘎拉/GM256/平邑甜茶,丽嘎拉/平邑甜茶树体总枝量达到前人提出丰产园的标准,而丽嘎拉/GM256/平邑甜茶树体总枝量略低于前人的研究结果。与丽嘎拉/GM256/平邑甜茶相比,丽嘎拉/平邑甜茶幼树期树高的快速增长和高比例的长枝数更有利于高纺锤形树形的快速构建,而结果期高比例的短枝数能够为果树早期丰产和稳产提供保障。栽培生产中,笔者发现以平邑甜茶为砧木,采用传统低位嫁接方式的丽嘎拉苹果树,由于树势强、长枝比例高、短枝数量少,高纺锤形树形培养周期长,早果性和丰产性较差。
砧木影响果树冠层结构、树体产量和果实品质[14,25-26]。笔者在本研究中发现丽嘎拉/平邑甜茶苹果树丰产性优于丽嘎拉/GM256/平邑甜茶,7年累计产量分别为216 686.25 kg·hm-2和158 802.99 kg·hm-2。調查果实产量空间分布和果实品质,发现两者间存在明显的差异性。丽嘎拉/平邑甜茶树冠高大(树高4.15 m),树冠中上部光照充足,结果枝和果实产量主要集中在冠层高度≥2.00 m的空间区域。由于叶片光合效率高,养分积累多,因此,果实单果质量大和外观品质好。而矮化中间砧具有阻碍养分、激素、水分运输,限制嫁接品种生长发育的作用[27-31]。丽嘎拉/GM256/平邑甜茶树高为3.22 m,树冠上部区域枝条萌发数量少,新梢和枝条主要集中分布在树冠中下部区域,因此,果实产量主要分布在冠层高度1.00~3.00 m的空间区域。GM256中间砧对养分运输的滞阻作用,导致同化物进入矮化中间砧后不容易上下运转[21]。叶片光合作用制造的同化物主要用于地上部果实和枝条生长,而外运根的系数量较少,因此,丽嘎拉/GM256/平邑甜茶果实可溶性固形物含量和固酸比等内在品质较好。
4 结 论
采用平邑甜茶砧木高位嫁接丽嘎拉的苹果树具有树高生长量大、主枝长、覆盖率高,总枝量多、短枝比例高,果实外观品质好、产量高等优点。而GM256/平邑甜茶砧木嫁接丽嘎拉具有果实内在品质好等优点。综合考虑果实产量、经济效益和产业需求,认为采用高位嫁接方式的丽嘎拉/平邑甜茶砧穗组合的乔砧密植栽培模式适宜在辽宁寒地苹果密植园栽培中应用推广。
参考文献References:
[1] 李丙智,韩明玉,张林森,张满让,郭鹏. 我国苹果矮化砧木应用现状及适应性调查[J]. 果农之友,2010(2):35-36.
LI Bingzhi,HAN Mingyu,ZHANG Linsen,ZHANG Manrang,GUO Peng. The application status and adaptability investigation of apple dwarf rootstock in China[J]. Fruit Growers Friend,2010(2):35-36.
[2] 马宝焜,徐继忠,孙建设. 关于我国苹果矮砧密植栽培的思考[J]. 果树学报,2010,27(1):105-109.
MA Baokun,XU Jizhong,SUN Jianshe. Consideration for high density planting with dwarf rootstocks in apple in China[J]. Journal of Fruit Science,2010,27(1):105-109.
[3] 李丙智,韩明玉,张林森,雷小明. 我国矮砧苹果生产现状与发展缓慢的原因分析及建议[J]. 烟台果树,2010(2):1-4.
LI Bingzhi,HAN Mingyu,ZHANG Linsen,LEI Xiaoming. The suggestion and analysis of the causes of slow development on short anvil apple production in China present situation[J]. Yantai Fruits,2010(2):1-4.
[4] 杨锋,伊凯,孙建设. 辽宁苹果矮化砧栽培现状与发展建议[J]. 中国果树,2014(1):78-80.
YANG Feng,YI Kai,SUN Jianshe. Current situation and development suggestions of apple dwarf rootstock cultivation in Liaoning province[J]. China Fruits,2014(1):78-80.
[5] 黄金凤,闫忠业,王冬梅,吕天星,王颖达,刘志. 辽宁熊岳地区苹果树冻害调查分析[J]. 中国果树,2020(5):127-129.
HUANG Jinfeng,YAN Zhongye,WANG Dongmei,L? Tianxing,WANG Yingda,LIU Zhi. Investigation and analysis on freezing injury of apple trees in Xiongyue,Liaoning province[J]. China Fruits,2020(5):127-129.
[6] 宣景宏,刘国成,吕德国,杜国栋,秦嗣军,李军. 东北苹果产区抗寒砧木研究与利用进展[J]. 北方果树,2015(2):1-3.
XUAN Jinghong,LIU Guocheng,L? Deguo,DU Guodong,QIN Sijun,LI Jun. Advances in research and utilization of cold-resistant rootstocks in apple producing areas of northeast China[J]. Northern Fruits,2015(2):1-3.
[7] 吕德国. ‘寒富苹果GM256矮化中间砧应用现状及对策分析[J]. 北方果树,2011(2):39-40.
L? Deguo. Application status and countermeasure analysis of ‘Hanfu apple GM256 dwarfinginterstock[J]. Northern Fruits,2011(2):39-40.
[8] 杨洪强,范伟国. 苹果根系构型及其调控研究进展[J]. 园艺学报,2012,39(9):1673-1678.
YANG Hongqiang,FAN Weiguo. Advances in research of apple root system architecture and its regulation[J]. Acta Horticulturae Sinica,2012,39(9):1673-1678.
[9] 高付鳳,毛云飞,张佳腾,杨恒峰,王增辉,沈向. 平邑甜茶外源花粉授粉效果和生殖机能研究[J]. 山东农业科学,2018,50(1):23-28.
GAO Fufeng,MAO Yunfei,ZHANG Jiateng,YANG Hengfeng,WANG Zenghui,SHEN Xiang. Study on pollination effect and reproductive function of Malus hupehensis with foreign pollen[J]. Shandong Agricultural Sciences,2018,50(1):23-28.
[10] 宋哲,王宏,刘志,于年文,张秀美,里程辉,李宏建,韩丽红. 平邑甜茶砧木高位嫁接苹果新品种直接建园探讨[J]. 江苏农业科学,2015,43(3):151-155.
SONG Zhe,WANG Hong,LIU Zhi,YU Nianwen,ZHANG Xiumei,LI Chenghui,LI Hongjian,HAN Lihong. Discussion on the direct establishment of Malus hupehensis Rehd. rootstock high grafting apple varieties[J]. Jiangsu Agricultural Sciences,2015,43(3):151-155.
[11] 吕天星,沈淑荣,闫忠业,刘志,姜孝军,朱红. 平邑甜茶嫁接高度对‘岳冠苹果生长和结果的影响[J]. 中国果树,2021(8):52-54.
L? Tianxing,SHEN Shurong,YAN Zhongye,LIU Zhi,Jiang Xiaojun,ZHU Hong. Effects of grafting height of Malus hupenensis on growth and fruiting of of ‘Yueguan apple[J]. China Fruits,2021(8):52-54.
[12] 李宏建,王宏,刘志,于年文,宋哲,张秀美,里程辉. 嘎拉苹果不同留果量对枝类组成、果实品质和产量的影响[J]. 果树学报,2020,37(12):1856-1864.
LI Hongjian,WANG Hong,LIU Zhi,YU Nianwen,SONG Zhe,ZHANG Xiumei,LI Chenghui. Effects of fruit load on the composition of branches,fruit quality and yield of Regal Gala apple[J]. Journal of Fruit Science,2020,37(12):1856-1864.
[13] 王宏,苏卫东,于年文. 苹果中早熟新品种丽嘎拉的选育[J]. 中国果树,2013(3):3-5.
WANG Hong,SU Weidong,YU Nianwen. Breeding of a new mid early ripening apple variety Regal Gala[J]. China Fruits,2013(3):3-5.
[14] 李宏建,王宏,刘志,于年文,宋哲,张秀美,里程辉. 岳阳红/77-34/山定子砧穗组合的苹果树体结构、果实产量和品质形成特点[J]. 果树学报,2019,36(1):56-66.
LI Hongjian,WANG Hong,LIU Zhi,YU Nianwen,SONG Zhe,ZHANG Xiumei,LI Chenghui. Formation characteristics of tree structure,fruit yield and quality in the apple stock-scion combination of Yue Yanghong with 77-34 interstock and Malus baccata Borkh. rootstock[J]. Journal of Fruit Science,2019,36(1):56-66.
[15] 陈奕州,赵水清,祝军,陈静玉,张玉刚,周爱琴. 7种矮化中间砧对‘嘎拉和‘富士苹果树体生长和果实品质的影响[J]. 青岛农业大学学报(自然科学版),2022,39(1):19-24.
CHEN Yizhou,ZHAO Shuiqing,ZHU Jun,CHEN Jingyu,ZHANG Yugang,ZHOU Aiqin. Effects of seven dwarf interstocks on the growth and fruit quality of ‘Gala and ‘Fuji apple trees[J]. Journal of Qingdao Agricultural University (Natural Science Edition),2022,39(1):19-24.
[16] 王大江,王昆,高源,刘立军,龚欣,赵继荣. 不同矮化中间砧对‘蜜脆苹果植株生长及果实功能性成分含量影响的综合评价[J]. 果树学报,2016,33(6):686-693.
WANG Dajiang,WANG Kun,GAO Yuan,LIU Lijun,GONG Xin,ZHAO Jirong. Comprehensive evaluation of the relationship between dwarfing interstocks and growth power and functional ingredients in the Honeycrisp apple[J]. Journal of Fruit Science,2016,33(6):686-693.
[17] 杜学梅,杨廷桢,高敬东,王骞,蔡华成,李春燕. 苹果砧木对嫁接品种影响的研究进展[J]. 西北农业学报,2020,29(4):487-495.
DU Xuemei,YANG Tingzhen,GAO Jingdong,WANG Qian,CAI Huacheng,LI Chunyan. Advances of effect of apple rootstocks on grafted varieties[J]. Acta Agriculturae Boreali-Occidentalis Sinica,2020,29(4):487-495.
[18] 孫长乾. 平邑甜茶高接‘宫崎短枝红富士苹果的密植栽培技术[J]. 北方果树,2022(3):26-28.
SUN Changqian. Dense planting technique of Malus hupehensis Rehd. grafted with Fuji apple[J]. Northern Fruits,2022(3):26-28.
[19] 郭学民,李娜,刘建珍,肖啸,张立彬. 毛樱桃嫁接美早甜樱桃小脚现象的导管分子特性研究[J]. 果树学报,2017,34(3):321-328.
GUO Xuemin,LI Na,LIU Jianzhen,XIAO Xiao,ZHANG Libin. Vesssel element characteristics of scion overgrowing of the sweet cherry variety Tieton grafted on Cerasus tomentosa[J]. Journal of Fruit Science,2017,34(3):321-328.
[20] 王晓玥,张国军,孙磊,闫爱玲,王慧玲,任建成,徐海英. 砧木对葡萄树体生长和内源激素的影响[J]. 园艺学报,2020,47(11):2107-2120.
WANG Xiaoyue,ZHANG Guojun,SUN Lei,YAN Ailing,WANG Huiling,REN Jiancheng,XU Haiying. Effects of different rootstocks on the growth and endogenous hormones for grope cultivars[J]. Acta Horticulturae Sinica,2020,47(11):2107-2120.
[21] 冯轶,许雪峰,张新忠,吴婷,王忆,韩振海. 苹果矮化砧木致矮机理的研究进展[J]. 园艺学报,2018,45(9):1633-1641.
FENG Yi,XU Xuefeng,ZHANG Xinzhong,WU Ting,WANG Yi,HAN Zhenhai. Progress of dwarfing mechanism of apple rootstock[J]. Acta Horticulturae Sinica,2018,45(9):1633-1641.
[22] 张林,刘磊超,王宇函,吕波,姚子涵,姜存仓. 有机态和无机态硼对柑橘枳橙砧木生长及生理的影响[J]. 园艺学报,2019,46(1):135-142.
ZHANG Lin,LIU Leichao,WANG Yuhan,L? Bo,YAO Zihan,JIANG Cuncang. Different influences of organic and inorganic boron fertilizers on citrange rootstock growth and physiology characters[J]. Acta Horticulturae Sinica,2019,46(1):135-142.
[23] 董建波. 苹果矮砧密植园个体与群体参数研究[D]. 保定:河北农业大学,2010:42-43.
DONG Jianbo. Research on individual and group parameters of apple orchard with intensive planting on dwarf rootstock[D]. Baoding:Agricultural University of Hebei,2010:42-43.
[24] 高登濤,郭景南,魏志峰,范庆锦,杨朝选. 中部地区两类矮砧密植苹果园生产效率及光照质量评价[J]. 中国农业科学,2012,45(5):909-916.
GAO Dengtao,GUO Jingnan,WEI Zhifeng,FAN Qingjin,YANG Chaoxuan. Evaluation of productivity and light quality in two high density dwarf rootstock apple orchards in central China[J]. Scientia Agricultura Sinica,2012,45(5):909-916.
[25] 杨伟伟,陈锡龙,刘航空,张满让,张东,韩明玉. 矮化中间砧短枝富士苹果高纺锤树形冠层结构与光能截获的三维模拟[J]. 中国农业科学,2014,47(23):4680-4694.
YANG Weiwei,CHEN Xilong,LIU Hangkong,ZHANG Manrang,ZHANG Dong,HAN Mingyu. Three-Dimensional simulation of canopy structure and light interception for tall spindle shape of spur Fuji apple with dwarf interstock[J]. Scientia Agricultura Sinica,2014,47(23):4680-4694.
[26] 梁海忠,范崇辉,王琰,曲俊贤,韩明玉. 苹果高纺锤形树体枝量、果实产量与品质的研究[J]. 西北农林科技大学学报(自然科学版),2010,38(7):123-128.
LIANG Haizhong,FAN Chonghui,WANG Yan,QU Junxian,HAN Mingyu. Research on shoot number,fruit yield and quality of high-spindle apple trees[J]. Journal of Northwest A & F University (Natural Science Edition),2010,38(7):123-128.
[27] 赵同生,赵国栋,张朝红,张新生,杨凤秋,陈东玫,赵永波,付友. 不同矮化中间砧对宫崎短枝富士树体生长、产量和品质的影响[J]. 果树学报,2016,33(11):1379-1387.
ZHAO Tongsheng,ZHAO Guodong,ZHANG Chaohong,ZHANG Xinsheng,YANG Fengqiu,CHEN Dongmei,ZHAO Yongbo,FU You. Effect of dwarfing interstocks on tree growth,yields and fruit quality of Miyazakifuji apple[J]. Journal of Fruit Science,2016,33(11):1379-1387.
[28] 董铁,王红平,孙文泰,尹晓宁,牛军强,刘兴禄,马明. 不同矮化中间砧对长富2号苹果生长特性、叶片生理及果实品质的影响[J]. 果树学报,2020,37(12):1846-1855.
DONG Tie,WANG Hongping,SUN Wentai,YIN Xiaoning,NIU Junqiang,LIU Xinglu,MA Ming. Effects of different dwarfing interstocks on tree growth characteristics,leaf physiology and fruit quality of Nagano Fuji No. 2 apple[J]. Journal of Fruit Science,2020,37(12):1846-1855.
[29] 史宝胜,徐继忠,陈海江,马宝焜,郭润芳. SH系砧木及对应中间砧红富士苹果枝条水分输导阻力研究[J]. 河北林果研究,2001,16(2):136-139.
SHI Baosheng,XU Jizhong,CHEN Haijiang,MA Baokun,GUO Runfang. The studies on water transmitting resistance with stems of different stocks and red Fuji apple grafted on interstocks[J]. Hebei Journal of Forestry and Orchard Research,2001,16(2):136-139.
[30] 万述伟,赵爱鸿,沙广利,王芝云,黄粤,马荣群,张翠玲. 矮化中间砧对‘嘎拉苹果树前期生长的影响[J]. 中国果树,2016(1):6-10.
WAN Shuwei,ZHAO Aihong,SHA Guangli,WANG Zhiyun,HUANG Yue,MA Rongqun,ZHANG Cuiling. Effect of dwarfing interstock on early growth of‘Gala apple tree[J]. China Fruits,2016(1):6-10.
[31] 袁继存,程存刚,赵德英,刘尚涛,厉恩茂. 不同中间砧木对寒富苹果生长、产量和果实品质的影响[J]. 应用生态学报,2021,32(9):3145-3151.
YUAN Jicun,CHENG Cungang,ZHAO Deying,LIU Shangtao,LI Enmao. Effects of different interstocks on the growth,yield and fruit quality of Hanfu apple[J]. Chinese Journal of Applied Ecology,2021,32(9):3145-3151.