蒋芯 颜丽菊 尤建林 徐春燕 张淑文 梁森苗
摘 要:【目的】深入了解楊梅种质资源表型性状的多样性特征,为杨梅种质资源的研究和利用提供理论依据和参考。【方法】以95份杨梅地方种质资源为试材,对其果实、果核、叶片和花序等44个表型性状(20个描述型性状和24个数量型性状)观测记录,并进行相关性、聚类和主成分等分析。【结果】20个描述型性状的Shannon-Wiener指数(H)和Simpson指数(D)变化范围分别为0.512 5~1.515 3和0.271 9~0.766 0,其中果实颜色、果核核表颜色和果核茸毛颜色等表现出较高的多样性。24个数量型性状的变异系数均值为19.03%,其中果实色泽指标b*值变异系数最大(63.99%)。数量型性状之间的相关性分析结果表明,72对相关系数达极显著水平,23对相关系数达显著水平。主成分分析结果表明,前8个主成分累计贡献率达81.827%,主要反映果实大小、果实色泽、果实糖酸含量等相关因子。根据聚类分析可将95份杨梅种质分为5个类群。【结论】杨梅种质资源表型性状存在丰富的多样性。其中果实单果质量、外观色泽指标、糖酸含量等可作为杨梅品质综合评定的重要指标。95份杨梅种质资源可分为5个类群,其中类群Ⅱ可用于选育大果型优质品种,类群Ⅳ可用于选育优质白梅类品种。
关键词:杨梅;种质资源;表型性状;多样性分析
中图分类号:S667.6 文献标志码:A 文章编号:1009-9980(2023)07-1281-13
Phenotypic traits diversity analysis of some Chinese bayberry germplasm resources
JIANG Xin1, YAN Liju2*, YOU Jianlin2, XU Chunyan1, ZHANG Shuwen3, LIANG Senmiao3
(1Taizhou Agricultural Technology Extension Center, Taizhou 318000, Zhejiang, China; 2Linhai Specialty and Technology Extension Station, Linhai 317000, Zhejiang, China; 3Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China)
Abstract: 【Objective】 Chinese bayberry (Myrica rubra Sieb. et Zucc.) is a subtropical evergreen fruit tree of the Myrica genus in Myricaceae family , bearing delicious, berry-like fruits. The fruit ripens in June and early July in the main production areas of China (i.e., Zhejiang and Jiangsu provinces), and its colors and appealing flavor are very attractive to the domestic and foreign consumers. The genus Myrica Linn. contains more than 50 species, of which six are found in China, including M. rubra, M. esculenta, M. nana, M. adenophora, M. integrifolia and M. arboresceus, respectively. According to relevant survey statistics, there are more than 300 Chinese bayberry cultivars in China. Diversity analysis of the phenotypic characters is a basic method for the evaluation of germplasm resources. However, there have been few reports on the identification of phenotypic traits of Chinese bayberry. In this study, the phenotypic traits diversity of 95 Chinese bayberry germplasm resources were analyzed in order to provide theoretical foundation for breeding and further utilization of the different bayberry resources. 【Methods】 In current study, 95 accessions of the Chinese bayberry germplasm resources were uesd as test materials, among them, 93 belongs to M. rubra, one to M. esculenta and one to M. nana × M. rubra hybrid. A total of 44 phenotypic traits (i.e., 20 descriptive indexes and 24 quantitative indexes) were investigated. The descriptive indexes including the fruit, stone, leaf and inflorescence traits were recorded by description and observation method. The quantitative indexes including the fruit, stone, leaf and inflorescence traits were analyzed by correlation analysis, cluster analysis and principal component analysis. The correlation analysis and principal component analysis were analyzed using SPSS26.0 software, while the cluster analysis was performed using MEGA X software. 【Results】 The genetic variation in phenotypic traits of 95 accessions of the Chinese bayberry germplasms was abundant. The Shannon-Wiener index H and Simpson index D of the 20 descriptive traits ranged from 0.512 5 to 1.515 3 and 0.271 9 to 0.766 0, respectively. The higher diversity indexes were observed in the fruit color (H: 1.447 7, D: 0.728 8), stone fur color (H: 1.224 0, D: 0.662 2), and stone color (H: 1.515 3, D: 0.766 0), indicating relatively rich genetic diversity in these traits. The mean value of variation coefficient of the 24 quantitative traits was 19.03%, and the highest variation coefficient was observed in the fruit color index b* value (63.99%). The correlation analysis between quantitative traits showed that 72 pairs of correlation coefficients were extremely significant (p<0.01), and 23 pairs of correlation coefficients were significant (p<0.05). The principal component analysis indicated that the cumulative contribution rate of the 8 main principal components was 81.827%, which mainly reflected factors of the fruit size, fruit color, fruit sugar content and acid content. The germplasms were divided into five main groups by the cluster analysis at the Euclidean distance of 20. The Group Ⅰ contained only 1 germplasm, namely Maoyangmei, which had the smallest single fruit weight, the smallest fruit vertical diameter, the lowest soluble solids content, the smallest solid-acid ratio and the thinnest leaf thickness among 95 germplasms, suggesting it could be used as a special germplasm resource. The Group Ⅱ included 4 germplasms, which mainly charactered by the large fruit shape and fruit weight. The Group Ⅲ contained 3 germplasms. The Group Ⅳ had 8 germplasms, which was mainly characterized by the white bayberry germplasms. The Group Ⅴ included 79 germplasms. 【Conclusion】 The 95 accessions of the Chinese bayberry germplasm resources were rich in genetic variation and high in diversity of phenotypic traits. The single fruit weight, fruit appearance color index, sugar content and acid content could be used as most important indicators for comprehensive evaluation of Chinese bayberry quality. The 95 accessions of the Chinese bayberry germplasm resources could be divided into 5 groups, among them, the group Ⅱ could be used for breeding larger fruit and higher quality variety, and the group Ⅳ could be used for breeding white bayberry variety.
Key words: Chinese bayberry (Myrica rubra Sieb. et Zucc.); Germplasm resources; Phenotype; Diversity analysis
杨梅(Myrica rubra Sieb. et Zucc.)属杨梅科(Myricaceae)杨梅属(Myrica L.)常绿植物,为中国南方特色果树。我国杨梅主要分布于长江流域以南地区,以浙江栽培面积最大,其次为江苏、福建、广东、湖南等地[1-3]。杨梅果实初夏成熟,色泽艳丽,鲜嫩多汁,酸甜适口,富含糖、酸、花青苷、黄酮、维生素和氨基酸等营养物质[4-5],风味浓郁,既可鲜食,也可加工,深受广大消费者喜爱。
品种资源分析评价是实现植物优良种质创新、品种选育和高效生产的前提和关键[6]。全球杨梅科植物共4个属约50余种,主要分布在南美洲、北美洲、欧洲、非洲东部及东亚地区。中国只有杨梅属1属6个种,包括杨梅(M. rubra)、毛杨梅(M. esculenta)、矮杨梅(M. nana)、青杨梅(M. adenophora)、全缘叶杨梅(M. integrifolia)和大杨梅(M. arboresceus)[1]。我国杨梅种质资源较为丰富,据陈慧等[7]报道我国杨梅有305个品种和105个品系,已定名品种为268个。但与其他大宗果树相比,我国杨梅育种工作起步晚,种质资源研究相对滞后。关于杨梅品种资源的研究,国内科研工作者主要通过分子标记鉴定[8-9]、基因组学分析[10-11]、芽变选种[12-13]等方法进行杨梅品种的遗传多样性分析和新品种选育研究,但尚未见较为系统全面的表型性状相关研究报道。
杨梅果实、果核、叶片和花序等表型性状不仅是杨梅种质资源描述的重要内容,也是区分杨梅品种资源的主要性状。本研究以浙江省临海市国家杨梅良种繁育基地内收集和引进的95份杨梅种质为试材,其中包括杨梅种93份、毛杨梅种1份、矮杨梅种和杨梅种杂交1份。通过对果实、果核、叶片、花序等44个表型性状进行观测统计,利用相关性分析、主成分分析、聚类分析等方法从形态学水平上研究其遗传多样性,探寻其性状的变异特点,以期为杨梅种质资源研究和育种提供依据和参考。
1 材料和方法
1.1 试验材料
试验于2017—2020年在浙江省临海市小芝镇国家杨梅良种繁育基地进行。试验材料为收集保存的95份杨梅种质(表1),以嫁接方式保存,常规管理。
1.2 性状观测
每个品种选取3株生长发育良好的结果树作为试验对象。参考《植物新品种特异性、一致性和稳定性测试指南 杨梅》(NY/T 2761—2015)[14]和高志红等[15]的方法,开展果实、果核、叶片、花序等表型性状观测。其中,果实、果核的性状观测主要在5月下旬至6月果实成熟期(即当种质全树约有75%果实的大小、性状和颜色等表现出该种质的固有特性的时间)进行;叶片性状观测主要在11月秋梢生长停止后进行;花序性状观测主要在2月下旬至3月花期进行。
果实、果核:随机选取树冠东南西北中不同部位成熟果实。观测记录果实形状、果实颜色、果实风味、贮藏性、果核形状、果核离核情况、果核缝合线、茸毛颜色和核表颜色,测量果实单果质量、纵径、横径、色泽指标、可溶性固形物含量、可滴定酸含量、果柄长度、果柄粗度、单果核质量、核长度、核宽度、核厚度。为保证测定数据的准确性和一致性,除贮藏性外,其他指标测定均在果实采摘当天完成。
叶片:随机选取老熟春梢中上部的叶片。观测记录叶片形状、叶尖形状、叶缘形状、叶片颜色,测量叶片长度、宽度、厚度。春梢初抽生期,观测记录嫩叶颜色。
花序:随机选取树冠中上部向阳面短果枝中心花枝上中上部花序。选择含苞待放花序测定花序长度、粗度,记录花序形状。开花后观测记录雌花开张度、雌花色泽以及单花序花朵数。
单果质量、单果核质量用准确度为0.01 g的电子天平测定;果实纵径、果实横径、果柄长度、果柄粗度、果核长度、果核宽度、果核厚度、叶片长度、叶片宽度、花序长度和花序粗度用数显游标卡尺测定;叶片厚度用YH-1叶片厚度计测定;果实可溶性固形物含量用PAL-1数显糖度计测定;果实可滴定酸含量用PAL-Easy ACID F5数显酸度计测定;果实色泽指标L*、a*、b*用CR-400色差仪测定。参照Zhang等[16]的方法计算红色葡萄果实颜色指数CIRG值。果形指数为果实纵径与横径比值。固酸比为果实可溶性固形物含量与可滴定酸含量比值。
1.3 数据分析
观测数据经Excel 2010整理统计。参照曾少敏等[17]方法計算20个描述型性状的遗传多样性指数Shannon-Wiener指数(H)和Simpson指数(D)。利用 SPSS26.0计算24个数量型性状的最小值、最大值、平均值、标准差和变异系数,并进行Pearson相关性分析和主成分分析。通过SPSS26.0以平方欧式距离计算95份种质资源数量型性状遗传距离,利用MEGA X软件按UPGMA遗传距离进行聚类分析并绘制聚类图。
2 结果与分析
2.1 描述型性状的多样性分析
将杨梅种质的20个描述型性状进行分类(表2),其中果实颜色、果核核表颜色等分组类型较多,具体各性状的分布情况如表3所示。
杨梅种质果实形状包括高圆球形、圆球形和扁圆球形,以圆球形为主(73.68%)。杨梅果实颜色可分为紫黑色、紫红色、深红色、红色、水红色或白色,以紫红色为主(42.11%),其次为深红色(20.00%)和紫黑色(18.95%),而红色占9.47%,水红色或白色只占9.47%。杨梅果实肉质可分为较硬、中、较柔软,以较柔软为多。果实果汁量较多,只有5份种质果汁少。果实风味以甜酸风味为主(65.26%)。杨梅果实大部分没有香味(69.47%),少数有清香味(6.32%),部分有松脂味;其中9份有较浓的松脂味,14份有淡松脂味。不同种质贮藏性存在差异,按贮藏性分为较好、中和较差,比例分别为54.74%、31.58%和13.68%。
杨梅种质果核形状可分为近圆形、卵形或扁卵形、长卵形和椭圆形,以卵形或扁卵形为主(68.42%)。杨梅果核离核情况可分为较离核、中和较黏核,以较黏核为主。大部分果核缝合线较明显。果核茸毛颜色包括淡黄褐色、黄褐色、浅棕色和棕色,以淡黄褐色比例最高(49.47%)。果核核表颜色包括淡黄绿色、黄绿色、青绿色、黄褐色和灰褐色。
杨梅种质叶片形状包括窄倒披针形、倒披针形、窄倒卵形和倒卵形,倒披针形比例最高(55.79%)。叶尖包括急尖、渐尖、钝和微缺,以渐尖为主(70.52%)。叶色包括深绿色、绿色和黄绿色,以绿色为主(58.95%)。叶缘有全缘、浅锯齿、深锯齿和带波状,以全缘为主(84.21%)。嫩叶颜色包括淡紫红色、橘黄色、淡绿色和褐红色,橘黄色比例最高(60.00%)。
杨梅种质雌花花序形状可分为圆筒形、长圆筒形和短圆筒形3类,以圆筒形为主(68.42%)。雌花开张度可分为V形、倒人字形、M形3类,以倒人字形比例最高(58.95%)。雌花色泽包括紫红色、玫瑰红色、红色和淡粉色,以紫红色比例最高(55.79%)。
由表3可知,20个描述型性状的Shannon-Wiener指数(H)和Simpson指数(D)变化范围分别为0.512 5~1.515 3和0.271 9~0.766 0,其中果实颜色、果核茸毛颜色和果核核表颜色的Shannon-Wiener指数(H)分别为1.447 7、1.224 0和1.515 3,数值较高,说明多样性较为丰富。
2.2 数量型性状多样性分析
从表4可知,95份杨梅种质资源的24个数量型性状变异系数范围为1.28%~63.99%。仅果实纵径、横径、果形指数、可溶性固形物含量、可食率和果核厚度6个性状的变异系数小于10%,其他18个性状的变异系数均大于10%,说明这些性状个体间存在较大差异。其中,变异系数以果实色泽指标b*值最高(63.99%),其次果柄长度为(33.84%),变异系数排序为b*值>果柄长度>L*>a*>单果核质量。
果实性状:果实单果质量、纵径、横径的均值分别为12.47 g、27.68 mm、28.54 mm,其中单果质量的变异系数为26.46%。种质箬溪变种单果质量最大(25.34 g)、纵径最长(36.15 mm)、横径最长(36.42 mm)。毛杨梅单果质量最小(5.01 g)、纵径最短(21.51 mm)。单果质量14 g以上的种质比例为24.21%,10 g以上种质的比例为85.26%。果形指数最大为广东大虾(1.04),最小为湖南白杨梅(0.86)。果柄最长为丁岙梅(18.87 mm),最短为甜山(2.92 mm),最粗为东方明珠(2.17 mm),最细为奉化野杨梅(0.62 mm)。
果实色泽指标L*、a*、b*、CIRG均值分别为20.75、15.03、7.08、4.40,变异系数最大的为b*。明亮度L*值最大为宁海水晶(42.99),最小为安海中梅(16.22)。红绿色度a*值最大为余姚早酸梅(24.68),最小为临海白梅(6.30)。黄蓝色度b*值最大为临海大白梅(21.14),最小为西山紫条(1.05)。色泽指标CIRG值最大为西山紫条(6.35),最小为临海大白梅(1.78)。
果实可溶性固形物含量、可滴定酸含量、固酸比和可食率均值分别为11.37%、1.14%、10.37%和94.32%,变异系数最大为可滴定酸含量(20.52%)。果实可溶性固形物含量最高为晚稻杨梅(13.40%),最低为毛杨梅(8.62%)。可滴定酸含量最高为广东红腊(2.11%),最低为安海变种(0.74%)。固酸比最高为上冲梅(16.21),最低为毛杨梅(4.74)。可食率最高为东魁杨梅(96.50%),最低为胭脂红(90.92%)。
果核性状:杨梅种质单果核质量、果核长度、果核宽度和果核厚度均值分别为0.69 g、13.08 mm、9.96 mm和8.20 mm,变异系数最大的为单果核质量(28.34%)。单果核质量最大为箬溪变种(1.51 g),最小为余姚纽扣梅(0.34 g)。果核长度最长为箬溪变种(18.46 mm),最短为安海早(10.29 mm)。果核宽度最宽为乌紫梅(13.34 mm),最窄为余姚纽扣梅(7.70 mm)。果核厚度最厚为乌紫梅(10.97 mm),最薄为桃红(6.27 mm)。
叶片性状:杨梅种质叶片长度、宽度、厚度均值分别为9.49 cm、2.91 cm和0.44 mm,其中叶片宽度变异系数较大(16.26%)。叶片长度最长为甜山(12.37 cm),最短为福建晚梅(6.23 cm)。叶片宽度最宽为临海水梅(4.13 cm),最窄为广东火炭(2.09 cm)。叶片厚度最厚为东方明珠(0.58 mm),最薄为毛杨梅雌株(0.28 mm)。
花序性状:95份杨梅种质雌性花序长度、粗度和单花序花朵数均值分别为8.69 mm、2.24 mm和6.78朵。其中花序长度最长为丁岙梅(19.60 mm),最短为晚稻杨梅(4.36 mm)。花序粗度最粗为涌泉2号(2.96 mm),最细为晚稻杨梅(1.62 mm)。单花序花朵数最多为湖南大叶梅(10.4朵),花朵数最少为晚稻杨梅(3.20朵)。
2.3 数量型性状的相关性分析
对95份杨梅种质的24个数量型性状进行Pearson相关性分析,结果见表5,其中72对相关系数达极显著水平(p<0.01),23对相关系数达显著水平(p<0.05)。单果质量、纵径和横径三者之间互相呈极显著正相关,相关系数分别为0.962、0.941、0.949。单果质量、纵径、横径均与果柄粗度、可食率、单果核质量、果核长度、果核宽度、果核厚度、叶片长度、叶片宽度、叶片厚度、花序粗度呈极显著正相关。单果质量與果实可滴定酸含量呈极显著负相关,与固酸比呈显著正相关。果实纵径与果实可滴定酸含量呈显著负相关。横径与果形指数、固酸比呈显著正相关,与果实可滴定酸含量呈极显著负相关。果形指数与果实可滴定酸含量、果核长度呈极显著正相关,与可食率呈极显著负相关,与L*呈显著负相关。果柄长度与果核宽度、花序长度、单花序花朵数呈极显著正相关。果柄粗度与果核长度、叶片厚度呈极显著正相关,与单果核质量呈显著正相关。
L*与b*呈极显著正相关,与CIRG呈极显著负相关。a*与b*、可溶性固形物含量呈显著正相关,与CIRG呈极显著负相关。b*与CIRG呈极显著负相关,与固酸比呈显著负相关。CIRG与固酸比呈显著正相关。果实可溶性固形物含量与a*、固酸比呈显著正相关。果实可滴定酸含量与固酸比、可食率呈极显著负相关。固酸比与可食率呈极显著正相关。可食率和单果核质量呈极显著负相关,与花序粗度呈显著正相关。
单果核质量、果核长度、果核宽度、果核厚度之间均呈极显著正相关。单果核质量、果核长度均与叶片长度、叶片宽度、叶片厚度呈极显著正相关。果核长度与花序长度、花序粗度呈显著正相关。果核宽度与叶片宽度、花序长度呈极显著正相关,与叶片长度、叶片厚度、单花序花朵数呈显著正相关。果核厚度与叶片宽度、叶片厚度呈极显著正相关。叶片长度与叶片宽度、单花序花朵数呈极显著正相关,与叶片厚度、花序粗度呈显著正相关。叶片宽度与叶片厚度、花序粗度呈极显著正相关,与花序长度呈显著正相关。叶片厚度与花序粗度呈显著正相关。花序长度与单花序花朵数呈极显著正相关。
2.4 主成分分析
对杨梅种质资源的24个数量性状进行主成分分析,结果见表6。根据特征值大于1的原则提取前8个主成分,累计贡献率达到81.827%,基本可以反映原始因子所代表的大部分信息。其中,主成分1贡献率为26.187%,根据特征向量绝对值大小得出,起决定作用的有单果质量、果实纵径和果实横径等性状,主要反映果实大小因子;主成分2贡献率为14.167%,起决定作用的有果实色泽指标CIRG、b*、L*、可滴定酸含量和固酸比等性状,主要反映果实色泽因子和糖酸因子;主成分3贡献率为10.651%,起决定作用的有L*、b*、CIRG和果形指数等性状,主要反映果实色泽因子;主成分4贡献率为8.223%,起决定作用的有花序长度和果柄长度等性状,主要反映果实果柄长短因子;主成分5贡献率为6.963%,起决定作用的有花序粗度、固酸比和可溶性固形物含量等性状,主要反映花序粗度和果实糖酸因子;主成分6贡献率为6.169%,起决定作用的有果梗粗度、a*和可溶性固形物含量等性状,主要反映果梗粗度、果实色泽和果实糖度因子等性状;主成分7贡献率为5.12%,起决定作用的有叶片长度和叶片宽度等性状,主要反映叶片因子;主成分8贡献率为4.349%,起决定作用的有果柄粗度和a*等性状。
2.5 聚类分析
如图1所示,基于数量型性状的UPGMA聚类,在遗传距离为20处可将95份杨梅种质资源划分为5大类群,各类群性状数值分布情况参见表7。其中,类群Ⅰ只有毛杨梅1个品种,该种质在所有参试种质中,单果质量最小,果实纵径最小,可溶性固形物含量最低,固酸比最小,叶片厚度最薄,可作为特殊种质资源利用。类群Ⅱ包括乌紫梅、箬溪变种、东方明珠、东魁杨梅4份种质,主要特征表现为大果型,平均单果质量均大于20 g,果实纵横径均大于33 mm,果实色泽为紫红色或深红色,L*值为17.78~19.68,a*值为15.10~22.33,b*值为4.34~9.33,CIRG值为3.69~4.90,可溶性固形物含量为11.06%~12.25%,可滴定酸含量为0.84%~1.19%,固酸比为9.81~13.45,该类可用于选育优质大果型品种。类群Ⅲ包括余姚纽扣梅、余姚水晶和奉化野楊梅3份种质,主要特征表现为小果型种质,单果质量为6.47~8.67 g,果实颜色为红色或水红色,L*值为21.43~33.29,a*值为20.10~22.42,b*值为10.36~17.50,CIRG值为2.32~3.34,可滴定酸含量为1.16%~1.51%,固酸比为6.76~9.65。类群Ⅳ包括福建白梅、宁海水晶、临海白梅、常熟白杨梅、上虞水晶、胭脂红、临海大白梅和湖南白杨梅8份种质,主要特征表现为白梅类种质,果实色泽为水红色或白色,色泽指标L*值为35.41~42.99,a*值为6.30~17.39,b*值为16.27~21.14,CIRG值为1.78~2.21,可溶性固形物含量为10.61%~11.62%,可滴定酸含量为1.00%~1.28%,固酸比为8.93~11.59,单果质量为10.40~18.40 g,该类可用于选育优质白杨梅品种。类群Ⅴ包含79份种质,占供试材料的83.16%,单果质量为7.38~17.91 g,果实色泽包括紫黑、紫红、深红或红色,L*值为16.22~27.14,a*值为8.26~24.68,b*值为1.05~14.96,CIRG值为2.66~6.35,可溶性固形物含量为10.10%~13.40%,可滴定酸含量为0.74%~2.11%。
3 讨 论
表型性状变异是生物遗传多样性在形态水平上的表现,反映了植物自身遗传因素与外部生活环境相互作用的结果[18-19]。表型性状观测是研究遗传多样性简便易行的方法[20]。通过表型性状遗传多样性研究,不仅能从整体了解表型遗传多样性的丰富程度,更为分子生物学研究提供可靠的表型数据[21]。在本研究中通过对95份杨梅种质资源44个表型性状的多样性分析,发现杨梅种质资源的表型性状具有丰富的遗传变异。20个描述型性状的遗传多样性指数Shannon-Wiener指数(H)和Simpson指数(D)变化范围分别为0.512 5~1.515 3和0.271 9~0.766 0,其中核表颜色、果实颜色、果肉质地、果核离核情况等多样性指数较高。24个数量型性状的变异系数为1.28%~63.99%,其中果实色泽指标、单果质量、单果核质量、花序长度、果柄长度和可滴定酸含量等数量型性状表现出较丰富的变异性。
杨梅种质描述型性状的分布频率差异较大,其中占比较大的种质表现为果实圆球形,紫红色,果实甜酸,果核卵形,较黏核,茸毛淡黄褐色,叶片倒披针形,叶尖渐尖,叶色绿色,叶缘全缘,嫩叶橘黄色,圆筒形花序,雌花紫红色,柱头开张度为倒人字形。
在种质筛选过程中,需注重各农艺性状之间的相关性,综合各性状特点兼具多种优良性状,可为品种选育奠定基础[22]。笔者在本试验中通过数量性状的相关性分析,发现杨梅种质单果质量、果实纵径、果实横径与单果核质量、果核长度、果核宽度、叶片长度、叶片宽度、叶片厚度之间存在极显著正相关性,说明杨梅果实的质量、大小与果核的质量、大小有关,与叶片的大小也存在相关性。果柄长度与花序长度呈极显著正相关,说明花序较长的品种,其果实果柄较长。果实色泽指标a*值与果实可溶性固形物含量呈显著正相关,说明在一定范围内,杨梅果实颜色红色程度越深,果实可溶性固形物含量越高,这与邱立军等[23]研究结果一致。通过数量性状的主成分分析,根据贡献率的大小,从主成分中筛选出单果质量、果实纵横径、果实色泽指标CIRG、b*、L*及可滴定酸含量、固酸比等性状是形成杨梅种质资源表型差异的主要因素。通过数量性状的聚类分析,杨梅种质被划分为5个类群,其中类群Ⅰ只有毛杨梅1个品种。毛杨梅属于杨梅属毛杨梅种,而其他种质属于杨梅种及矮杨梅种和杨梅种的杂交,因此在性状表现上差异较大。早荠蜜梅和晚荠蜜梅是荸荠种中芽变选育出的2个品种[24-25],在本文聚类分析图中,3个品种聚类在同一小組,说明表型性状的聚类一定程度上也能反映出种质间的亲缘关系。
4 结 论
杨梅种质资源遗传变异丰富,表型性状多样性高。通过主成分分析,根据贡献率的大小,从主成分中筛选出果实大小因子、外观色泽因子、糖酸含量因子等可用于作为对杨梅品质综合评定的重要指标。聚类分析在欧式距离20处可将杨梅种质资源分为5类,其中类群Ⅱ可用于选育大果型优质品种,类群Ⅳ可用于选育优质白梅类品种。
参考文献References:
[1] 何新华,陈力耕,陈怡,郭长禄. 中国杨梅资源及利用研究评述[J]. 果树学报,2004,21(5):467-471.
HE Xinhua,CHEN Ligeng,CHEN Yi,GUO Changlu. Review on germplasm resources of Myrica and their exploitation in China[J]. Journal of Fruit Science,2004,21(5):467-471.
[2] CHEN K S,XU C J,ZHANG B,FERGUSON I B. Red bayberry:botany and horticulture[M]//JANICK J. Horticultural Reviews. Oxford,UK:John Wiley & Sons,Inc. ,2010:83-114.
[3] 周超超,陈竹韵,汪国云,朱奕凡,巨鹏举,赵岚,陈金辉,焦云,高中山. 余姚杨梅种质资源研究和开发利用[J]. 果树资源学报,2022,3(4):1-6.
ZHOU Chaochao,CHEN Zhuyun,WANG Guoyun,ZHU Yifan,JU Pengju,ZHAO Lan,CHEN Jinhui, JIAO Yun,GAO Zhongshan. Research and utilization of the red bayberry germplasm resources in Yuyao city[J]. Journal of Fruit Resources,2022,3(4):1-6.
[4] 张泽煌,钟秋珍,林旗华. 杨梅果实氨基酸组成及营养评价[J]. 热带作物学报,2012,33(12):2279-2283.
ZHANG Zehuang,ZHONG Qiuzhen,LIN Qihua. The content of amino acid of Chinese bayberry fruit and its nutritive evaluation[J]. Chinese Journal of Tropical Crops,2012,33(12):2279-2283.
[5] 李伟,郜海燕,陈杭君,吴伟杰,房祥军. 基于主成分分析的不同品种杨梅果实综合品质评价[J]. 中国食品学报,2017,17(6):161-171.
LI Wei,GAO Haiyan,CHEN Hangjun,WU Weijie,FANG Xiangjun. Evaluation of comprehensive quality of different varieties of bayberry based on principal components analysis[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(6):161-171.
[6] 钟声远,罗宇婷,赵勇,王振兴,管志勇,房伟民,陈发棣,王海滨. 切花菊品种资源表型多样性分析[J]. 植物资源与环境学报,2021,30(5):22-33.
ZHONG Shengyuan,LUO Yuting,ZHAO Yong,WANG Zhenxing,GUAN Zhiyong,FANG Weimin,CHEN Fadi,WANG Haibin. Analysis on phenotypic diversity of cut chrysanthemum cultivar resources[J]. Journal of Plant Resources and Environment,2021,30(5):22-33.
[7] 陈慧,唐威,费艳. 杨梅种质资源遗传多样性研究进展[J]. 现代园艺,2016(3):5-7.
CHEN Hui,TANG Wei,FEI Yan. Research progress on genetic diversity of Myrica rubra germplasm resources[J]. Contemporary Horticulture,2016(3):5-7.
[8] 张水明. 基于AFLP和SSR分子标记的中国杨梅遗传多样性分析[D]. 杭州:浙江大学,2009.
ZHANG Shuiming. Genetic diversity analysis of Chinese bayberry (Myrica rubra Sieb. & Zucc.) based on AFLP and SSR markers[D]. Hangzhou:Zhejiang University,2009.
[9] 焦云,柴春燕,舒巧云. 基于SSR分子标记的早熟杨梅优株遗传多样性分析[J]. 中国南方果树,2019,48(4):42-45.
JIAO Yun,CHAI Chunyan,SHU Qiaoyun. Analysis of genetic diversity of early-maturing elite plants of Chinese bayberry (Myrica rubra) with SSR markers [J]. South China Fruits,2019,48(4):42-45.
[10] 戚行江,任海英,梁森苗,鄭锡良,吴阳春. 杨梅全基因组测序结果初报[J]. 浙江农业科学,2015,56(10):1564-1566.
QI Xingjiang,REN Haiying,LIANG Senmiao,ZHENG Xiliang,WU Yangchun. Preliminary report on sequencing results of whole genome of Myrica rubra[J]. Journal of Zhejiang Agricultural Sciences,2015,56(10):1564-1566.
[11] JIA H M,JIA H J,CAI Q L,WANG Y,ZHAO H B,YANG W F,WANG G Y,LI Y H,ZHAN D L,SHEN Y T,NIU Q F,CHANG L,QIU J,ZHAO L,XIE H B,FU W Y,JIN J,LI X W,JIAO Y,ZHOU C C,TU T,CHAI C Y,GAO J L,FAN L J,VAN DE WEG E,WANG J Y,GAO Z S. The red bayberry genome and genetic basis of sex determination[J]. Plant Biotechnology Journal,2019,17(2):397-409.
[12] 陈方永,倪海枝,王引,颜帮国. 大果杨梅新品种‘永冠[J]. 园艺学报,2018,45(6):1213-1214.
CHEN Fangyong,NI Haizhi,WANG Yin,YAN Bangguo. A new big fruit Chinese bayberry cultivar‘Yongguan[J]. Acta Horticulturae Sinica,2018,45(6):1213-1214.
[13] 郭秀珠,宋洋,刘冬峰,胡丹,陈巍. 杨梅新品种早炭的选育[J]. 果树学报,2021,38(10):1821-1823.
GUO Xiuzhu,SONG Yang,LIU Dongfeng,HU Dan,CHEN Wei. A new Chinese bayberry cultivar zaotan[J]. Journal of Fruit Science,2021,38(10):1821-1823.
[14] 中华人民共和国农业部. 植物新品种特异性、一致性和稳定性测试指南 杨梅:NY/T 2761—2015[S]. 北京:中国农业出版社,2015.
Ministry of Agriculture of the Peoples Republic of China. Guidelines for the conduct of tests for distinctness,uniformity and stability. Chinese Bayberry (Myrica Linn.):NY/T 2761—2015[S]. Beijing:China Agriculture Press,2015.
[15] 高志红,黄颖宏,倪照君,梁森苗. 杨梅种质资源描述规范和数据标准[M]. 北京:中国农业科学技术出版社,2020.
GAO Zhihong,HUANG Yinghong,NI Zhaojun,LIANG Senmiao. Descriptors and data standards for Chinese bayberry (Myrica rubra Sieb. et Zucc.)[M]. Beijing:China Agricultural Science and Technology Press,2020.
[16] ZHANG X N,HUANG H Z,ZHANG Q L,FAN F J,XU C J,SUN C D,LI X,CHEN K S. Phytochemical characterization of Chinese bayberry (Myrica rubra Sieb. et Zucc.) of 17 cultivars and their antioxidant properties[J]. International Journal of Molecular Sciences,2015,16(6):12467-12481.
[17] 曾少敏,陈小明,黄新忠. 福建地方梨资源果实性状多样性分析及其数量分类研究[J]. 园艺学报,2019,46(2):237-251.
ZENG Shaomin,CHEN Xiaoming,HUANG Xinzhong. Fruit character diversity analysis and numerical classification of local pear germplasm resources in Fujian[J]. Acta Horticulturae Sinica,2019,46(2):237-251.
[18] 吴如健,万继锋,韦晓霞,陈瑾,胡菡青,潘少霖. 橄榄种质资源果实表型性状多样性分析及其数量分类研究[J]. 果树学报,2015,32(5):797-805.
WU Rujian,WAN Jifeng,WEI Xiaoxia,CHEN Jin,HU Hanqing,PAN Shaolin. Fruit character diversity analysis and numerical classification of Chinese olive germplasm resources[J]. Journal of Fruit Science,2015,32(5):797-805.
[19] 林存学,杨晓华,刘海荣. 东北寒地96份李种质资源表型性状遗传多样性分析[J]. 园艺学报,2020,47(10):1917-1929.
LIN Cunxue,YANG Xiaohua,LIU Hairong. Genetic diversity analysis of 96 plum germplasm resources by phenotypic traits in northeast cold area[J]. Acta Horticulturae Sinica,2020,47(10):1917-1929.
[20] 颉刚刚,欧阳丽婷,谢军,刘贝贝,耿文娟. 新疆地区欧洲李叶片表型性状多样性及亲缘关系分析[J]. 植物资源与环境学报,2018,27(3):72-78.
XIE Ganggang,OUYANG Liting,XIE Jun,LIU Beibei,GENG Wenjuan. Analyses on diversity of leaf phenotypic traits and genetic relationships of Prunus domestica in Xinjiang region[J]. Journal of Plant Resources and Environment,2018,27(3):72-78.
[21] 孫珍珠,李秋月,王小柯,赵婉彤,薛杨,冯锦英,刘小丰,刘梦雨,江东. 宽皮柑橘种质资源表型多样性分析及综合评价[J]. 中国农业科学,2017,50(22):4362-4383.
SUN Zhenzhu,LI Qiuyue,WANG Xiaoke,ZHAO Wantong,XUE Yang,FENG Jinying,LIU Xiaofeng,LIU Mengyu,JIANG Dong. Comprehensive evaluation and phenotypic diversity analysis of germplasm resources in mandarin[J]. Scientia Agricultura Sinica,2017,50(22):4362-4383.
[22] 赫卫,张慧. 基于表型性状和SRAP标记的观赏用辣椒种质资源遗传多样性分析[J]. 中国瓜菜,2022,35(1):16-23.
HE Wei,ZHANG Hui. Analysis of genetic diversity of pepper germplasm resources for ornamental based on phenotypic traits and SRAP markers[J]. China Cucurbits and Vegetables,2022,35(1):16-23.
[23] 邱立军,张真真,刘洁琪. 晚稻杨梅果实外观指标与可溶性固形物含量的关系[J]. 浙江农业科学,2021,62(4):768-770.
QIU Lijun,ZHANG Zhenzhen,LIU Jieqi. Correlation analysis between fruit appearance and soluble solid content of red bayberry var. Wandao[J]. Journal of Zhejiang Agricultural Sciences,2021,62(4):768-770.
[24] 戚行江,梁森苗,郑锡良,陈宗良,柴春燕. 特早熟杨梅新品种‘早荠蜜梅[J]. 园艺学报,2003,30(6):759.
QI Xingjiang,LIANG Senmiao,ZHENG Xiliang,CHEN Zongliang,CHAI Chunyan. A new bayberry cultivar ‘zaoqi mimei[J]. Acta Horticulturae Sinica,2003,30(6):759.
[25] 戚行江,梁森苗,郑锡良,汪国云. 优质晚熟杨梅新品种‘晚荠蜜梅[J]. 园艺学报,2004,31(1):136.
QI Xingjiang,LIANG Senmiao,ZHENG Xiliang,WANG Guoyun. A new bayberry variety‘Wanqi Mimei[J]. Acta Horticulturae Sinica,2004,31(1):136.