潘国冠 李果明
【摘要】 左心疾病相关肺动脉高压(PH-LHD)是肺动脉高压(PH)最常见的形式,是左心疾病晚期常见并发症,且PH患者预后差、病死率高。目前国内外关于PH-LHD肺血管重塑的形成机制尚未完全明确,可能是多因素作用,与血管活性物质、交感神经系统激活、肾素-血管紧张素-醛固酮系统、炎症因子、左心房功能障碍等相关。本文将对PH-LHD的定义、血流动力学及肺血管重塑的病理生理机制进行综述。
【关键词】 左心衰竭 肺动脉高压 血管重塑 病理生理
[Abstract] Pulmonary hypertension associated with left heart disease (PH-LHD) is the most common form of pulmonary hypertension (PH) and a common complication in the late stage of left ventricular disease, and PH patients have poor prognosis and high mortality. At present, the formation mechanism of PH-LHD pulmonary vascular remodeling is not completely clear in China and abroad. It may be due to multi-factor effects, which is related to vasoactive substances, activation of the sympathetic nervous system, renin-angiotensin-aldosterone system, inflammatory factors, left atrial dysfunction, etc. This article will review the definition, hemodynamics and pathophysiological mechanism of pulmonary vascular remodeling of PH-LHD.
[Key words] Left heart failure Pulmonary hypertension Vascular remodeling Pathophysiology
First-author's address: Guangdong Medical University, Zhanjiang 524023, China
doi:10.3969/j.issn.1674-4985.2023.16.043
肺动脉高压(pulmonary hypertension,PH)是指在海平面、静息状态下经右心导管检查(right heart catheterization,RHC)測量的肺动脉平均压(mean pulmonary artery pressure,mPAP)≥25 mmHg[1]。正常成年人静息状态下mPAP为(14.0±3.3)mmHg,上限不超过20 mmHg[2]。基于临床数据表明mPAP在21~24 mmHg范围内的轻度升高与各种形式的PH患者的死亡率增加有关[3],《2022 ESC/ERS肺动脉高压诊断和治疗指南》中将PH血流动力学诊断标准修改为mPAP>20 mmHg[4]。
PH分为五大类:(1)动脉性PH;(2)左心疾病所致PH;(3)肺部疾病和/或低氧所致PH;(4)慢性血栓栓塞性PH和/或其他肺动脉阻塞性病变所致PH;(5)未明和/或多因素所致PH[1]。左心疾病相关肺动脉高压(PH-LHD)是最常见的形式,约占PH病例的68.5%[5]。左心疾病主要包括缺血性心肌病、高血压性心脏病、扩张型心肌病、肥厚型心肌病、风湿性心脏病及心脏瓣膜病,其中以缺血性心肌病、高血压性心脏病常见[6]。心力衰竭是各种心脏疾病的严重表现或晚期阶段,常并发PH,PH的进展与临床恶化及死亡风险显著相关[7]。目前关于PH-LHD的发病机制尚不完全清楚,但肺血管重塑是PH-LHD的病理特征之一,了解PH-LHD肺血管重塑的病理生理机制,对患者的治疗与管理具有重要意义。
1 PH-LHD的定义及血流动力学
PH-LHD定义为海平面、静息状态下行RHC,mPAP≥25 mmHg且肺动脉楔压(pulmonary artery wedge pressure,PAWP)>15 mmHg[1]。结合肺血管阻力(pulmonary vascular resistance,PVR),《2022 ESC/ERS肺动脉高压诊断和治疗指南》将PH-LHD分为两个亚型:单纯性毛细血管后PH(Ipc-PH):mPAP>20 mmHg,PAWP>15 mmHg,PVR≤2 WU;毛细血管前后混合性PH(Cpc-PH):mPAP>20 mmHg,PAWP>15 mmHg,PVR>2 WU[4]。
2 PH-LHD肺血管重塑的病理生理
PH-LHD形成早期是因为左心充盈压上升,压力逆向传导,肺静脉回流受阻,肺血管压力升高[8],而肺血管结构未有明显变化,此阶段称为“Ipc-PH”或“被动性PH”。随着病情进展,肺动脉结构和功能发生改变,涉及血管壁广泛结构,表现为血管壁增厚变硬,管腔直径缩小,血管舒张力降低及阻力增加[9],最终导致肺血管阻力持续升高和右心衰,此阶段称为“Cpc-PH”或“反应性PH”。同时左右心室作为功能相互依赖的整体,为了适应肺动脉高压,右心室代偿性肥厚及扩张,室间隔向左心室偏移,使左心室舒张压力-容量曲线上移,充盈及射血受损,左心功能进一步恶化,加重肺血管血流动力障碍。PH-LHD肺血管系统的组织学特征包括肺动脉平滑肌细胞(PASMCs)增殖与肥大、弹性及胶原纤维成分增加、小动脉闭塞或机化、非平滑肌小动脉转化为平滑肌小动脉、局部小血管形成等,其主要的病理生理机制尚未明确,可能是多种因素的共同结果。
2.1 肺血管内皮功能障碍 肺血管内皮功能障碍是PH进展的关键启动因素,而且左心功能不全进一步导致血流紊乱、肺血管淤血、缺氧等,进而破坏内皮舒张与收缩因子平衡。肺血管内皮分泌的舒张、收缩因子共同调控肺血管舒张和收缩,血管活性物质主要包括一氧化氮(NO)、前列环素(PGI2)、内皮素-1(endothelin-1,ET-1)、血栓素A2(TXA2)等。NO在内源性因素如缓激肽、乙酰胆碱和儿茶酚胺或机械(剪切应力或拉伸)等刺激下,由内皮型一氧化氮合酶(eNOS)连续合成并立即释放,迅速扩散到周围的平滑肌细胞,通过鸟苷酸环化酶(GC)-cGMP-PKG途径舒张血管[10]。同时NO可通过其他途径抑制PASMCs增殖,减缓肺血管重塑的进展。大量实验研究发现了PH-LHD存在肺血管内皮功能障碍、NO合成受损、血管扩张剂反应性降低等现象[11-14]。在炎症、缺氧、损伤等环境下,机体发生氧化应激,NO过量转化为过氧亚硝酸盐(ONOO-),导致NO生物利用度降低[14];同时PKG氧化导致PKG活性受损,通过RhoA/Rho激酶激活诱导血管收缩和血管重塑[15]。
与NO相比,ET-1是有效的血管收缩活性物质,其产生和释放受血管紧张素Ⅱ(AngⅡ)、活性氧(ROS)、炎症细胞因子等多种因素调节[16],通过触发平滑肌细胞增殖和胶原蛋白生成促进血管重塑[17-18]。ET-1主要在肺组织中表达,与血管平滑肌细胞(SMC)ETA、ETB受体结合后,可激活磷脂酶C(PLC),产生第二信使三磷酸肌醇(IP3)和二酰基甘油(DAG),触发细胞内储存的钙释放,产生持续的血管收缩反应[10]。另外,ET-1过量生成可抑制eNOS表达,导致NO分泌减少[19]。在一项动物实验研究中,通过行肺静脉束带术后发现肺前ET-1及内皮素转化酶-1的mRNA表达增强,肺内皮素通路上调,肺血管阻力增加,并提出了抑制ET通路可为早期Cpc-PH提供药物治疗靶点[20]。
2.2 神经体液机制
2.2.1 交感神经过度激活 交感神经过度激活是心力衰竭的重要始动因素和促发因素,同时是PH-LHD进展中不可忽视的重要因素。已有大量研究数据表明,交感神经系统过度激活与PH进展相关。肺血管中存在广泛的交感神经支配,PH患者,特别是临床症状恶化患者,往往存在血儿茶酚胺浓度升高、心率变异性降低、肌肉交感神经活动增加等交感神经系统过度激活的表现。
肾上腺素受体(adrenergic receptor,AR)主要为α肾上腺素受体(α-AR)和β肾上腺素受体(β-AR),α-AR(α1、α2)主要介导血管收缩,而β-AR(β1、β2、β3)介导血管舒张。已有研究发现肺血管内皮细胞的β2-AR可调节eNOS产生NO,通过GC-cGMP-PKG途径诱导平滑肌细胞松弛及血管舒张[21],并且可改善内皮功能障碍、抑制平滑肌细胞异常增殖[22]。血浆中NE通过与肺动脉平滑肌上的α1-AR相结合,与G蛋白偶联激活PLC,产生IP3和DAG[23],促进钙离子释放及内流,细胞内钙离子浓度升高,导致平滑肌的持续强直收缩;同时可诱导PASMCs和外膜成纤维细胞肥大与增生,出现肺血管阻力增加、肺动脉重塑[23-24]。
研究表明α/β受体拮抗剂阿罗洛尔可减缓野百合碱(monocrotaline,MCT)诱导大鼠PH的发展[25];非选择性α/β受体阻滞剂卡维地洛通过逆转缺氧或MCT诱导的PH模型中的右心室衰竭改善MCT大鼠的生存情况[26]。奈必洛尔是选择性β1受体阻滞剂,且具有β2、β3激动剂功能,可减少炎症因子生成,改善内皮功能障碍及平滑肌细胞异常增殖[22]。目前去交感神经术治疗在动物实验和临床阶段均表明其具有改善肺动脉阻力作用,减缓PH进展。一项98例Cpc-PH患者的临床研究结果显示,肺动脉去神经术(pulmonary artery denervation,PADN)手术组与对照组相比,PVR显著降低,临床恶化率下降[27]。
2.2.2 肾素-血管紧张素-醛固酮系统(RAAS)激活 RAAS在維持心血管稳态、水电解质平衡中起着重要作用。左心功能不全,心输出量减少,RAAS长期激活,严重损伤心脏、肺血管结构与功能,并与疾病进展和死亡率密切相关。局部RAAS功能可起到调节血管血流、控制刺激反应,并参与细胞增殖、分化与凋亡等[28]。在PH的动物模型中可反复观察到血循环中醛固酮升高。醛固酮诱导氧化应激产生ROS,损害内皮素-B(ETB)受体信号通路,降低肺动脉内皮细胞中ETB依赖性NO合成,同时降低NO生物利用度[29]。ACE作用AngⅠ转化为AngⅡ主要发生在肺部,且肺内皮细胞的ACE活性增加及表达上调,AngⅡ的生成在PH中局部升高[30]。持续暴露的AngⅡ导致血管平滑肌细胞肥大与增殖,并与血管炎症、纤维化及血管内皮功能受损有关。AngⅡ激活RhoA/Rho激酶信号通路,通过抑制肌球蛋白轻链磷酸酶(MLCP)介导血管收缩,且负性调节eNOS和PI3-激酶(PI3K)活性导致内皮功能障碍[31]。
ACE2-Ang(1-7)-Mas轴是RAAS系统主要成员之一,负向调节ACE-AngⅡ-AT1R轴。Ang(1-7)与Mas受体结合后,可促进ECs释放NO和前列腺素,产生血管舒张、抗增殖、抗炎、抗血栓及改善内皮等作用[32]。临床研究证实了PH患者血清中ACE2、Ang(1-7)水平或活性降低,而AngⅡ水平升高[33]。ACE2活性增强可降低AngⅡ/Ang(1-7)比值,并通过超氧化物歧化酶2(SOD2)降低活性氧并抑制炎症,从而改善异常的肺血流动力学[34];ACE2活化诱导eNOS的磷酸化,NO释放增加[35]。Ang(1-7)通过NO/cGMP信号通路阻止AngⅡ介导的病理重构[36],且抑制血小板衍生的生长因子和AngⅡ介导的PASMCs增殖,以及具有抗血管生成功能[37]。一项对5例PH受试者的临床研究表明,使用人重组可溶性ACE2(rhACE2)制剂可改善肺动脉压力、降低氧化应激[34]。另外,ACE2-Ang(1-7)-Mas轴可通过抑制心肌重构、保护心肌细胞、减少炎症因子产生等作用以抵抗ACE-AngⅡ-AT的不良影响,进一步研究ACE2-Ang(1-7)-Mas轴的机制可为PH提供新的潜在药物靶点。
2.3 炎症因子 肺血管炎症因子浸润是PH的主要病理特征之一,炎症反应与血管内皮损伤、PASMCs增殖、间质纤维化等有着密切关系。已有研究表明心力衰竭患者表现出高水平表达的循环炎症因子,包括白细胞介素-6(IL-6)、肿瘤坏死因子(TNF)-α和C反应蛋白等[38];同时由于心脏泵血功能障碍,左心压力升高传导至肺静脉,肺血管进一步淤血,导致肺血管痉挛收缩、内皮损伤、缺氧、血栓形成等,会促进炎症细胞活化,浸润肺血管病变部位。PH患者及相关动物模型表明肺动脉血管结构聚集大量巨噬细胞、T淋巴细胞等,释放大量细胞因子、趋化因子,如IL-1、IL-6、TNF、CX3CL1,参与PH的发生与进展[39]。
在动物实验中,小鼠IL-6的过表达导致促血管生长因子、血管内皮生长因子、增殖转录因子、抗凋亡蛋白等上调,以及出现毛细血管前小动脉严重闭塞;另一方面,缺氧诱导的PH转基因IL-6缺陷小鼠却表现出较少炎症及肺血管重塑病变,应用IL-6受体特异性拮抗剂可有效减轻PH小鼠的肺血管重塑[40]。核因子κB(NF-κB)是炎症的主要调节因子,诱导促炎细胞因子和趋化因子的基因表达[41]。Sawada等[42]研究表明NF-κB导致血管细胞黏附分子(VCAM)-1的激活,与MCT诱导的大鼠PH的发展有关,且使用NF-κB抑制剂吡咯烷二硫代氨基甲酸酯(PDTC)可减轻小动脉闭塞,缓解PH症状。Luo等[43]研究发现NF-κB可介导低氧诱导因子(HIF)-1α的转录程序并促进PH模型中的血管重塑,同时此研究表明了控制HIF-1α驱动的血管重塑可为PH治疗提供新的途径。心血管疾病患者多合并肥胖、血脂异常、胰岛素抵抗、糖尿病等代谢综合征(metabolic syndrome,MS),MS可誘发全身炎症反应,而且炎症因子浸润及免疫调节失衡是血管重塑的关键致病驱动因素,免疫治疗应用于PH-LHD可能是新的治疗策略。
2.4 左心房功能障碍 在心肺循环中,左心房是衔接左心室与肺循环之间的桥梁,通过规律收缩与舒张使左心室充盈,同时保护肺循环免受左心室反复的压力冲击。左心房是一个动态结构,具体功能分为:(1)储集功能:左室收缩期左心房接受肺静脉血液回流;(2)通道功能:左室舒张早期抽吸作用通过左心房将血液运输到左心室;(3)增压泵功能:舒张末期,左心房主动收缩将剩余血流泵入左心室[44]。
HFpEF、HFrEF、VHD等可导致左心房压力(LAP)升高、容量增加,进而出现左心房增大、收缩性受损、间质纤维化等重构表现,以至于左心房僵硬、顺应性下降及房室运动不协调,作为左心房压力升高和肺循环之间的屏障作用减弱,压力被动传导至肺血管,导致肺静脉压力升高、肺淤血。在结构形态方面,左心房重构发生球形变化和扩张,正常曲率改变,打破了左心房三维不对称结构,干扰正常生理血流动力学,可增加肺静脉淤血风险[45]。此外,LAP的突然升高可能导致“肺泡-毛细血管应激衰竭”,这是一种可逆的气压性损伤,破坏内皮单层结构完整性及肺泡毛细血管屏障,血管内皮通透性改变使红细胞、蛋白质和液体渗漏到肺泡腔内,出现肺间质及肺泡水肿[9]。左心房压力持续变化在内皮功能障碍、神经体液因素、炎症因子浸润等作用下,导致肺血管系统结构异常、肺血管阻力增加。左心疾病容易出现房颤等心律失常并发症,心房正常功能丧失,可加重或加快PH-LHD的进展。已有研究表明心房颤动是PH-LHD的危险因素之一[46],与窦性心律相比,房颤心律患者中mPAP、PAWP、肺血管阻力等血流动力学参数值更高。左心房参与肺动脉系统病理生理变化的主要机制很大程度上是未知的,进一步研究可能为PH-LHD提供新的治疗靶点。
3 总结与展望
PH-LHD发病率高,且预后差、病死率高,是严重影响生命健康的心肺血管疾病。目前PH-LHD肺血管重塑的形成机制尚未完全明确,可能是多因素作用,与血管活性物质、交感神经系统激活、RAAS、炎症因子、左心房功能障碍等相关,各个因素之间相互影响相互作用。另外,不同类型心力衰竭(HFpEF、HFrEF、HFmrEF)PH的病理生理与血流动力学存在一定差异,完善相关侵入性及非侵入性的血流动力学检查是明确诊断及治疗选择的关键。目前多项关于PH-LHD药物治疗的大规模临床试验已在开展[47],期待其可提供新的证据及治疗方向。进一步研究及完善PH-LHD肺血管重塑的病理生理机制,寻找新的靶点及其他治疗途径,以期改善或逆转心肺血管结构病变,降低发病率及病死率。
参考文献
[1]中华医学会呼吸病学分会肺栓塞与肺血管病学组,中国医师协会呼吸医师分会肺栓塞与肺血管病工作委员会,全国肺栓塞与肺血管病防治协作组,等.中国肺动脉高压诊断与治疗指南(2021版)[J].中华医学杂志,2021,101(1):11-51.
[2] SIMONNEAU G,MONTANI D,CELERMAJER D S,et al.Haemodynamic definitions and updated clinical classification of pulmonary hypertension[J].Eur Respir J,2019,53(1):1801913.
[3] DOUSCHAN P,KOVACS G,AVIAN A,et al.Mild elevation of pulmonary arterial pressure as a predictor of mortality[J].Am J Respir Crit Care Med,2018,197(4):509-516.
[4] HUMBERT M,KOVACS G,HOEPER M M,et al.2022 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension[J].Eur Respir J,2022,43(38):3618-3731.
[5] WIJERATNE T D,LAJKOSZ K,BROGLY S B,et al.Increasing incidence and prevalence of WHO groups 1-4 pulmonary hypertension: a population-based cohort study in Ontario, Canada[J/OL].Circ Cardiovasc Qual Outcomes,2018,11(2):e003973.https://pubmed.ncbi.nlm.nih.gov/29444925/.
[6] VOS T,BARBER R M,BELL B,et al.Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013[J].Lancet,2015,386(9995):743-800.
[7] BARYWANI S B,FU M.Impact of systolic pulmonary artery pressure on all-cause mortality in elderly cardiac patients[J].Scand Cardiovasc J,2018,52(2):80-84.
[8] VACHI?RY J L,ADIR Y,BARBER? J A,et al.Pulmonary hypertension due to left heart diseases[J].J Am Coll Cardiol,2013,62(25):D100-D108.
[9] ROSENKRANZ S,GIBBS J S R,WACHTER R,et al.Left ventricular heart failure and pulmonary hypertension[J].Eur Heart J,2016,37(12):942-954.
[10] BREITLING S, RAVINDRAN K,GOLDENBERG N M,et al.The pathophysiology of pulmonary hypertension in left heart disease[J].Am J Physiol Lung Cell Mol Physiol,2015,309(9):L924-L941.
[11] DRISS A B,DEVAUX C,HENRION D,et al.Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure[J].Circulation,2000,101(23):2764-2770.
[12] SCOTT D,TAN Y,SHANDAS R,et al.High pulsatility flow stimulates smooth muscle cell hypertrophy and contractile protein expression[J].Am J Physiol Lung Cell Mol Physiol,2013,304(1):L70-L81.
[13] KEREM A,YIN J,KAESTLE S M,et al.Lung endothelial dysfunction in congestive heart failure[J].Circulation Research,2010,106(6):1103-1116.
[14] EVANS C E,ZHAO Y Y.Molecular basis of nitrative stress in the pathogenesis of pulmonary hypertension[J].Adv Exp Med Biol,2017,967:33-45.
[15] HAO Y D,CAI L,MIRZA M K,et al.Protein kinase G-I deficiency induces pulmonary hypertension through Rho A/Rho kinase activation[J].Am J Pathol,2012,180(6):2268-2275.
[16] KR?GER-GENGE A,BLOCKI A,FRANKE R P,et al.Vascular endothelial cell biology: an update[J].Int J Mol Sci,2019,20(18):4411.
[17] KIM F Y,BARNES E A,YING L,et al.Pulmonary artery smooth muscle cell endothelin-1 expression modulates the pulmonary vascular response to chronic hypoxia[J].Am J Physiol Lung Cell Mol Physiol,2015,308(4):L368-L377.
[18] ROSSI G P,SECCIA T M,BARTON M,et al.Endothelial factors in the pathogenesis and treatment of chronic kidney disease Part Ⅱ: Role in disease conditions: a joint consensus statement from the European Society of Hypertension working group on endothelin and endothelial factors and the Japanese Society of Hypertension[J].J Hypertens,2018,36(3):462-471.
[19] GUPTA R M,LIBBY P,BARTON M.Linking regulation of nitric oxide to endothelin-1: the Yin and Yang of vascular tone in the atherosclerotic plaque[J].Atherosclerosis,2020,292:201-203.
[20] VAN DUIN R W B,STAM K,CAI Z,et al.Transition from post-capillary pulmonary hypertension to combined pre-and post-capillary pulmonary hypertension in swine: a key role for endothelin[J].J Physiol,2019,597(4):1157-1173.
[21] BANQUET S,DELANNOY E,AGOUNI A,et al.Role of G(i/o)-Src kinase-PI3K/Akt pathway and caveolin-1 in β2-adrenoceptor coupling to endothelial NO synthase in mouse pulmonary artery[J].Cellular Signalling,2011,23(7):1136-1143.
[22] PERROS F,RANCHOUX B,IZIKKI M,et al.Nebivolol for improving endothelial dysfunction, pulmonary vascular remodeling, and right heart function in pulmonary hypertension[J].J Am Coll Cardiol,2015,65(7):668-680.
[23] VISWANATHAN G,MAMAZHAKYPOV A,SCHERMULY R T,et al.The role of G protein-coupled receptors in the right ventricle in pulmonary hypertension[J].Front Cardiovasc Med,2018,5:179.
[24] LIU R,ZHANG Q,LUO Q,et al.Norepinephrine stimulation of alpha1D-adrenoceptor promotes proliferation of pulmonary artery smooth muscle cells via ERK-1/2 signaling[J].Int J Biochem Cell Biol,2017,88:100-112.
[25] ISHIKAWA M,SATO N,ASAI K,et al.Effects of a pure α/β-adrenergic receptor blocker on monocrotaline-induced pulmonary arterial hypertension with right ventricular hypertrophy in rats[J].Circulation Journal,2009, 3(12):2337-2341.
[26] BOGAARD H J,NATARAJAN R,MIZUNO S,et al.Adrenergic receptor blockade reverses right heart remodeling and dysfunction in pulmonary hypertensive rats[J].Am J Respir Crit Care Med,2010,182(5):652-660.
[27] ZHANG H,ZHANG J,CHEN M,et al.Pulmonary artery denervation significantly increases 6-min walk distance for patients with combined pre-and post-capillary pulmonary hypertension associated with left heart failure: the PADN-5 study[J].JACC Cardiovasc Interv,2019,12(3):274-284.
[28] FORRESTER S J,BOOZ G W,SIGMUND C D,et al.Angiotensin Ⅱ signal transduction: an update on mechanisms of physiology and pathophysiology[J].Physiological Reviews,2018,98(3):1627-1738.
[29] MARON B A,ZHANG Y Y,WHITE K,et al.Aldosterone inactivates the endothelin-B receptor via a cysteinyl thiol redox switch to decrease pulmonary endothelial nitric oxide levels and modulate pulmonary arterial hypertension[J].Circulation,2012,126(8):963-974.
[30] MARON B A,LEOPOLD J A.Emerging concepts in the molecular basis of pulmonary arterial hypertension (PAH): Part Ⅱ: neurohormonal signaling contributes to the pulmonary vascular and right ventricular pathophenotype of PAH[J].Circulation,2015,31(23):2079-2091.
[31] ZOLTY R.Novel experimental therapies for treatment of pulmonary arterial hypertension[J].J Exp Pharmacol,2021,13:817-857.
[32] LAHM T,HESS E,BAR?N A E,et al.Renin-angiotensin-aldosterone system inhibitor use and mortality in pulmonary hypertension[J].Chest,2021,159(4):1586-1597.
[33] SANDOVAL J,DEL VALLE-MONDRAG?N L,MASSO F,et al.Angiotensin converting enzyme 2 and angiotensin (1-7) axis in pulmonary arterial hypertension[J].Eur Respir J,2020,56(1):1902416.
[34] HEMNES A R,RATHINASABAPATHY A,AUSTIN E A,et al.A potential therapeutic role for angiotensin converting enzyme 2 in human pulmonary arterial hypertension[J].Eur Respir J,2018,51(6):1702638.
[35] LI G,ZHANG H,ZHAO L,et al.Angiotensin-converting enzyme 2 activation ameliorates pulmonary endothelial dysfunction in rats with pulmonary arterial hypertension through mediating phosphorylation of endothelial nitric oxide synthase[J].J Am Soc Hypertens,2017,11(12):842-852.
[36] GOMES E R M,LARA A A,ALMEIDA P W M,et al.Angiotensin-(1-7) prevents cardiomyocyte pathological remodeling through a nitric oxide/guanosine 3',5'-cyclic monophosphate-dependent pathway[J].Hypertension,2010,55(1):153-160.
[37] ZHANG F,CHEN A,PAN Y,et al.Research Progress on pulmonary arterial hypertension and the role of the angiotensin converting enzyme 2-angiotensin-(1-7)-mas axis in pulmonary arterial hypertension[J].Cardiovasc Drugs Ther,2022,36(2):363-370.
[38] ABERNETHY A,RAZA S,SUN J,et al.Pro-inflammatory biomarkers in stable versus acutely decompensated heart failure with preserved ejection fraction[J/OL].J Am Heart Assoc,2018,7(8):e007385.https://pubmed.ncbi.nlm.nih.gov/29650706/.
[39] FUNK-HILSDORF T C,BEHRENS F,GRUNE J,et al.Dysregulated immunity in pulmonary hypertension: from companion to composer[J].Front Physiol,2022,13:819145.
[40] ZOLTY R.Novel experimental therapies for treatment of pulmonary arterial hypertension[J].J Exp Pharmacol,2021,13:817-857.
[41] ZENG X,ZHU L,XIAO R,et al.Hypoxia-induced mitogenic factor acts as a nonclassical ligand of calcium-sensing receptor, therapeutically exploitable for intermittent hypoxia-induced pulmonary hypertension[J].Hypertension,2017,69(5):844-854.
[42] SAWADA H,MITANI Y,MARUYAMA J,et al.A nuclear factor-kappaB inhibitor pyrrolidine dithiocarbamate ameliorates pulmonary hypertension in rats[J].Chest,2007,132(4):1265-1274.
[43] LUO Y,TENG X,ZHANG L,et al.CD146-HIF-1α hypoxic reprogramming drives vascular remodeling and pulmonary arterial hypertension[J].Nature Communications,2019,10:3551.
[44] BISBAL F,BARANCHUK A,BRAUNWALD E,et al.Atrial failure as a clinical entity: JACC review topic of the week[J].J Am Coll Cardiol,2020,75(2):222-232.
[45] KILNER P J,YANG G Z,WILKES A J,et al.Asymmetric redirection of flow through the heart[J].Nature,2000,404(6779):759-761.
[46] LEUNG C C,MOONDRA V,CATHERWOOD E,et al.Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction[J].Am J Cardiol,2010,106(2):284-286.
[47] LTEIF C,ATAYA A,DUARTE J D.Therapeutic challenges and emerging treatment targets for pulmonary hypertension in left heart disease[J/OL].J Am Heart Assoc,2021,10(11):e020633.https://pubmed.ncbi.nlm.nih.gov/34032129/.
(收稿日期:2022-11-11) (本文編辑:陈韵)